ORIENTED SUPERSINGULAR ELLIPTIC CURVES 8 CLASS GROUP ACTIONS

LEONAROO COLȮ \& DAVID KOHEL

Institut de Mathématiques de Marseille

ALgebraic and combinatorial methods for COding and CRYPTography

CONTENTS

- Orientations and class group actions.
- OSIDH protocol.
- Security considerations.

ORIENTATIONS AND CLASS GROUP ACTIONS

SUPERSINGULAR ISOGENY GRAPHS

The supersingular isogeny graphs are remarkable because the vertex sets are finite: there are $(p+1) / 12+\epsilon_{p}$ curves. Moreover

- every supersingular elliptic curve can be defined over $\mathbb{F}_{p^{2}}$;
- all ℓ-isogenies are defined over $\mathbb{F}_{p^{2}}$;
- every endomorphism of E is defined over $\mathbb{F}_{p^{2}}$.

The lack of a commutative group acting on the set of supersingular elliptic curves $/ \mathbb{F}_{p^{2}}$ makes the isogeny graph more complicated.

ORIENTATIONS

Let \mathcal{O} be an order in an imaginary quadratic field K.
An \mathcal{O}-orientation on a supersingular elliptic curve E is an embedding

$$
\iota: \mathcal{O} \hookrightarrow \operatorname{End}(E) .
$$

A K-orientation is an embedding

$$
\iota: K \hookrightarrow \operatorname{End}^{0}(E)=\operatorname{End}(E) \otimes_{\mathbb{Z}} \mathbb{Q} .
$$

An \mathcal{O}-orientation is primitive if

$$
\mathcal{O} \simeq \operatorname{End}(E) \cap \iota(K)
$$

Theorem

The category of K-oriented supersingular elliptic curves (E, ι), whose morphisms are isogenies commuting with the K-orientations, is equivalent to the category of elliptic curves with CM by K.

ORIENTATIONS - orening Iocenes

Let $\phi: E \rightarrow F$ be an isogeny of degree ℓ. A K-orientation $\iota: K \hookrightarrow \operatorname{End}^{0}(E)$ determines a K-orientation $\phi_{*}(\iota): K \hookrightarrow \operatorname{End}^{0}(F)$ on F, defined by

$$
\phi_{*}(\iota)(\alpha)=\frac{1}{\ell} \phi \circ \iota(\alpha) \circ \hat{\phi} .
$$

Conversely, given K-oriented elliptic curves $\left(E, \iota_{E}\right)$ and $\left(F, \iota_{F}\right)$ we say that an isogeny $\phi: E \rightarrow F$ is K-oriented if $\phi_{*}\left(\iota_{E}\right)=\iota_{F}$, i.e., if the orientation on F is induced by ϕ.

ORIENTED ISOGENY GRAPHS - an xadaple

Let $p=71$ and E_{0} / \mathbb{F}_{71} be the supersingular elliptic curve with $j(E)=0$ oriented by the $\mathcal{O}_{K}=\mathbb{Z}[\omega]$, where $\omega^{2}+\omega+1=0$.
The orientation by $K=\mathbb{Q}[\omega]$ differentiates vertices in the descending paths from E_{0}, determining an infinite graph shown here to depth 4:

ORIENTED ISOGENY GRAPHS - vet another example

We let again $p=71$ and we consider the isogeny graph oriented by $\mathbb{Z}\left[\omega_{79}\right]$ where ω_{79} generates the ring of integers of $\mathbb{Q}(\sqrt{-79})$.

PRIIITIVE ORIENTATIONS

- $\mathrm{SS}(p)=\left\{\right.$ supersingular elliptic curves over $\overline{\mathbb{F}}_{p}$ up to isomorphism $\}$.
- $\mathrm{SS}_{\mathcal{O}}(p)=\left\{\mathcal{O}\right.$-oriented s.s. elliptic curves over $\overline{\mathbb{F}}_{p}$ up to K-isomorphism $\}$.
- $\mathrm{SS}_{\mathcal{O}}^{p r}(p)=$ subset of primitive \mathcal{O}-oriented curves.

An element of $\mathrm{SS}_{\mathcal{O}}^{p r}(p)$ consists of

- A supersingular elliptic curve E / \mathbb{F}_{p};
- a primitive orientation $\iota: \mathcal{O} \hookrightarrow \operatorname{End}(E)$;
- a structure of a p-orientation which is a homomorphism $\rho: \mathcal{O} \rightarrow \overline{\mathbb{F}}_{p}$.

$$
\rho: \mathcal{O} \longrightarrow \mathcal{O} / \mathfrak{p} \xrightarrow{\iota} \operatorname{End}(E) / \mathfrak{P} \hookrightarrow \overline{\mathbb{F}}_{p}
$$

- $\mathrm{SS}_{\mathcal{O}}^{p r}(\rho)=$ set of oriented supersingular elliptic curves with ρ induced by ι.

CLASS GROUP ACTION

The set $\mathrm{SS}_{\mathcal{O}}(\rho)$ admits a transitive group action:

$$
\begin{aligned}
\mathcal{C l}(\mathcal{O}) \times \mathrm{SS}_{\mathcal{O}}(\rho) & \longrightarrow \mathrm{SS}_{\mathcal{O}}(\rho) \\
([\mathfrak{a}], E) & \longmapsto[\mathfrak{a}] \cdot E=E / E[\mathfrak{a}]
\end{aligned}
$$

Proposition

The set $\operatorname{SS}_{\mathcal{O}}^{p r}(\rho)$ is a torsor for the class group $\operatorname{C\ell }(\mathcal{O})$.

For fixed primitive p-oriented supersingular curve E, we get bijection of sets:

$$
\mathcal{C l}(\mathcal{O}) \longrightarrow \mathrm{SS}_{\mathcal{O}}^{p r}(\rho)
$$

EFFECTIVE CLASS GROUP ACTIONS

We consider an elliptic curve E_{0} with an effective endomorphism ring (eg. $\left.j_{0}=0,1728\right)$ and a chain of ℓ-isogenies.

EFFECTIVE CLASS GROUP ACTIONS

We consider an elliptic curve E_{0} with an effective endomorphism ring (eg. $\left.j_{0}=0,1728\right)$ and a chain of ℓ-isogenies.

- For $\ell=2$ (or 3) a suitable candidate for \mathcal{O}_{K} could be the Gaussian integers $\mathbb{Z}[i]$ or the Eisenstein integers $\mathbb{Z}[\omega]$.

EFFECTIVE CLASS GROUP ACTIONS

We consider an elliptic curve E_{0} with an effective endomorphism ring (eg. $\left.j_{0}=0,1728\right)$ and a chain of ℓ-isogenies.

- Horizontal isogenies must be endomorphisms

EFFECTIVE CLASS GROUP ACTIONS

We consider an elliptic curve E_{0} with an effective endomorphism ring (eg. $\left.j_{0}=0,1728\right)$ and a chain of ℓ-isogenies.

- We push forward our q-orientation obtaining F_{1}.

EFFECTIVE CLASS GROUP ACTIONS

We consider an elliptic curve E_{0} with an effective endomorphism ring (eg. $\left.j_{0}=0,1728\right)$ and a chain of ℓ-isogenies.

- We repeat the process for F_{2}.

EFFECTIVE CLASS GROUP ACTIONS

We consider an elliptic curve E_{0} with an effective endomorphism ring (eg. $\left.j_{0}=0,1728\right)$ and a chain of ℓ-isogenies.

- And again till F_{n}.

OSIDH

OSIDH PROTOCOL

PUBLIC DATA: A chain of ℓ-isogenies $E_{0} \rightarrow E_{1} \rightarrow \ldots \rightarrow E_{n}$ and a set of splitting primes $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{t} \subseteq \mathcal{O} \subseteq \operatorname{End}\left(E_{n}\right) \cap K \subseteq \mathcal{O}_{K}$

ALICE
BOB

PUBLIC DATA: A chain of ℓ-isogenies $E_{0} \rightarrow E_{1} \rightarrow \ldots \rightarrow E_{n}$ and a set of splitting primes $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{t} \subseteq \mathcal{O} \subseteq \operatorname{End}\left(E_{n}\right) \cap K \subseteq \mathcal{O}_{K}$ ALICE

BOB
Choose integers in a bound $[-r, r]$
$\left(e_{1}, \ldots, e_{t}\right)$
$\left(d_{1}, \ldots, d_{t}\right)$

PUBLIC DATA: A chain of ℓ-isogenies $E_{0} \rightarrow E_{1} \rightarrow \ldots \rightarrow E_{n}$ and a set of splitting primes $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{t} \subseteq \mathcal{O} \subseteq \operatorname{End}\left(E_{n}\right) \cap K \subseteq \mathcal{O}_{K}$

ALICE

BOB
Choose integers in a bound $[-r, r]$
$\left(e_{1}, \ldots, e_{t}\right)$
$\left(d_{1}, \ldots, d_{t}\right)$
Construct an
isogenous curve

$$
F_{n}=E_{n} / E_{n}\left[\mathfrak{p}_{1}^{e_{1}} \cdots \mathfrak{p}_{t}^{e_{t}}\right]
$$

$$
G_{n}=E_{n} / E_{n}\left[\mathfrak{p}_{1}^{d_{1}} \cdots \mathfrak{p}_{t}^{d_{t}}\right]
$$

PUBLIC DATA: A chain of ℓ-isogenies $E_{0} \rightarrow E_{1} \rightarrow \ldots \rightarrow E_{n}$ and a set of splitting primes $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{t} \subseteq \mathcal{O} \subseteq \operatorname{End}\left(E_{n}\right) \cap K \subseteq \mathcal{O}_{K}$

ALICE

BOB

Choose integers in a bound $[-r, r]$
Construct an isogenous curve
Precompute all

$$
\begin{array}{cc}
\left(e_{1}, \ldots, e_{t}\right) & \left(d_{1}, \ldots, d_{t}\right) \\
F_{n}=E_{n} / E_{n}\left[\mathfrak{p}_{1}^{e_{1}} \cdots \mathfrak{p}_{t}^{e_{t}}\right] & G_{n}=E_{n} / E_{n}\left[\mathfrak{p}_{1}^{d_{1}} \cdots \mathfrak{p}_{t}^{d_{t}}\right] \\
F_{n, i}^{(-r)} \leftarrow F_{n, i}^{(-r+1)} \leftarrow \ldots \leftarrow F_{n, i}^{(1)} \leftarrow F_{n} & G_{n, i}^{(-r)} \leftarrow G_{n, i}^{(-r+1) \leftarrow \ldots \leftarrow G_{n, i}^{(1)} \leftarrow G_{n}}
\end{array}
$$ directions $\forall i$

OSIDH PROTOCOL

PUBLIC DATA: A chain of ℓ-isogenies $E_{0} \rightarrow E_{1} \rightarrow \ldots \rightarrow E_{n}$ and a set of splitting primes $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{t} \subseteq \mathcal{O} \subseteq \operatorname{End}\left(E_{n}\right) \cap K \subseteq \mathcal{O}_{K}$

ALICE

BOB

Choose integers in a bound $[-r, r]$

$$
\begin{equation*}
\left(e_{1}, \ldots, e_{t}\right) \tag{1}
\end{equation*}
$$

Construct an isogenous curve
Precompute all

$$
\begin{array}{ll}
F_{n}=E_{n} / E_{n}\left[\mathfrak{p}_{1}^{e_{1}} \cdots \mathfrak{p}_{t}^{e_{t}}\right] & G_{n}=E_{n} / E_{n}\left[\mathfrak{p}_{1}^{d_{1}} \cdots \mathfrak{p}_{t}^{d_{t}}\right] \\
F_{n, i}^{(-r)} \leftarrow F_{n, i}^{(-r+1)} \leftarrow \ldots \leftarrow F_{n, i}^{(1)} \leftarrow F_{n} & G_{n, i}^{(-r)} \leftarrow \leftarrow G_{n, i}^{(-r+1)} \leftarrow \ldots \leftarrow G_{n, i}^{(1)} \leftarrow G_{n} \\
F_{n} \rightarrow F_{n i}^{(1)} \rightarrow \ldots \rightarrow F_{n, i}^{(r-1)} \rightarrow F_{n, 1}^{(r)} & G_{n} \rightarrow G_{n i}^{(1)} \rightarrow \ldots \rightarrow G_{n i}^{(r-1)} \rightarrow G_{n, 1}^{(r)}
\end{array}
$$ directions $\forall i$

OSIDH PROTOCOL

PUBLIC DATA: A chain of ℓ-isogenies $E_{0} \rightarrow E_{1} \rightarrow \ldots \rightarrow E_{n}$ and a set of splitting primes $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{t} \subseteq \mathcal{O} \subseteq \operatorname{End}\left(E_{n}\right) \cap K \subseteq \mathcal{O}_{K}$

ALICE

BOB

Choose integers in a bound $[-r, r]$ $\left(e_{1}, \ldots, e_{t}\right)$

Construct an isogenous curve

$$
\begin{array}{ll}
F_{n}=E_{n} / E_{n}\left[\mathfrak{p}_{1}^{e_{1}} \cdots \mathfrak{p}_{t}^{e_{t}}\right] & G_{n}=E_{n} / E_{n}\left[\mathfrak{p}_{1}^{d_{1}} \cdots \mathfrak{p}_{t}^{d_{t}}\right] \tag{1}\\
F_{n, i}^{(-r)} \leftarrow F_{n, i}^{(-r+1)} \leftarrow \ldots \leftarrow F_{n, i}^{(1)} \leftarrow F_{n} & G_{n, i}^{(-r)} \leftarrow G_{n, i}^{(-r+1)} \leftarrow \ldots \leftarrow G_{n, i}^{(1)} \leftarrow G_{n}
\end{array}
$$

Precompute all directions $\forall i$
... and their conjugates
Exchange data

$$
\begin{aligned}
& F_{n} \rightarrow F_{n, i}^{(1)} \rightarrow \ldots \rightarrow F_{n, i}^{(r-1)} \rightarrow F_{n, 1}^{(r)} \\
& G_{n}+\text { directions }
\end{aligned} G_{n} \rightarrow G_{n, i}^{(1)} \rightarrow \ldots \rightarrow G_{n, i}^{(r-1)} \rightarrow G_{n, 1}^{(r)}
$$

OSIDH PROTOCOL

PUBLIC DATA: A chain of ℓ-isogenies $E_{0} \rightarrow E_{1} \rightarrow \ldots \rightarrow E_{n}$ and a set of
splitting primes $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{t} \subseteq \mathcal{O} \subseteq \operatorname{End}\left(E_{n}\right) \cap K \subseteq \mathcal{O}_{K}$

ALICE

BOB

Choose integers in a bound $[-r, r]$
Construct an isogenous curve

$$
\begin{array}{ll}
F_{n}=E_{n} / E_{n}\left[\mathfrak{p}_{1}^{e_{1}} \cdots \mathfrak{p}_{t}^{e_{t}}\right] & G_{n}=E_{n} / E_{n}\left[\mathfrak{p}_{1}^{d_{1}} \cdots \mathfrak{p}_{t}^{d_{t}}\right] \\
F_{n, i}^{(-r)} \leftarrow F_{n, i}^{(-r+1)} \leftarrow \ldots \leftarrow F_{n, i}^{(1)} \leftarrow F_{n} & G_{n, i}^{(-r)} \leftarrow G_{n, i}^{(-r+1)} \leftarrow \ldots \leftarrow G_{n, i}^{(1)} \leftarrow G_{n}
\end{array}
$$

Precompute all directions $\forall i$
... and their conjugates
Exchange data

Compute shared data

$$
\begin{aligned}
& F_{n} \rightarrow F_{n, i}^{(1)} \rightarrow \ldots \rightarrow F_{n, i}^{(r-1)} \rightarrow F_{n, 1}^{(r)} \quad G_{n} \rightarrow G_{n, i}^{(1)} \rightarrow \ldots \rightarrow G_{n, i}^{(r-1)} \rightarrow G_{n, 1}^{(r)} \\
& G_{n}+\text { directions }
\end{aligned}
$$

Takes e_{i} steps in
\mathfrak{p}_{i}-isogeny chain \& push forward information for

$$
j>i
$$

Takes d_{i} steps in \mathfrak{p}_{i}-isogeny chain \& push forward information for $j>i$.

$$
\begin{equation*}
\left(e_{1}, \ldots, e_{t}\right) \quad\left(d_{1}, \ldots, d_{t}\right) \tag{1}
\end{equation*}
$$

OSIDH PROTOCOL

PUBLIC DATA: A chain of ℓ-isogenies $E_{0} \rightarrow E_{1} \rightarrow \ldots \rightarrow E_{n}$ and a set of splitting primes $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{t} \subseteq \mathcal{O} \subseteq \operatorname{End}\left(E_{n}\right) \cap K \subseteq \mathcal{O}_{K}$

ALICE
 ALIC

Choose integers in a bound $[-r, r]$
Construct an isogenous curve Precompute all directions $\forall i$

BOB

L.COLÒ $\frac{1}{M}$

$$
\begin{array}{cc}
\left(e_{1}, \ldots, e_{t}\right) & \left(d_{1}, \ldots, d_{t}\right) \\
F_{n}=E_{n} / E_{n}\left[p_{1}^{e_{1}} \cdots \mathfrak{p}_{t}^{e_{t}}\right]
\end{array} G_{n}=E_{n} / E_{n}\left[\mathfrak{p}_{1}^{d_{1}} \ldots \mathfrak{p}_{t}^{d_{t}}\right] .
$$

... and their conjugates
Exchange data

Compute shared data

In the end, they share $H_{n}=E_{n} / E_{n}\left[\mathfrak{p}_{1}^{e_{1}+d_{1}} \cdot \ldots \cdot \mathfrak{p}_{t}^{e_{t}+d_{t}}\right]$

SECURITV CONSIDERATIONS

OSIDH PROTOCOL - sculuriy consIderations

For an order \mathcal{O} of conductor $\ell^{n} M$, we note that $\mathcal{C}(\mathcal{O}) \simeq \operatorname{SS}_{\mathcal{O}}^{p r}(\rho)$ and define

$$
I=I_{1} \times \ldots \times I_{t} \subseteq \mathbb{Z}^{t} \quad \text { where } I_{j}=\left[-r_{j}, r_{j}\right]
$$

The security of OSIDH depends on the following maps

$$
I=\prod_{i=1}^{t}\left[-r_{i}, r_{i}\right] \longrightarrow \mathrm{SS}_{\mathcal{O}}^{p r}(\rho) \longrightarrow \mathrm{SS}(p)
$$

Supersingular covering bound

We say that the map $\mathcal{C l}(\mathcal{O}) \simeq \operatorname{SS}_{\mathcal{O}}^{p r}(\rho) \longrightarrow \operatorname{SS}(p)$ is λ-surjective if

$$
p^{\lambda} \leq \# C l(\mathcal{O})
$$

where λ is the logarithmic covering radius. We get

$$
\lambda \log _{\ell}(p) \leq n+\log _{\ell}(M)+\log _{\ell}\left(h\left(\mathcal{O}_{K}\right)\right)
$$

OSIDH PROTOCOL - sculuriy consIderations

For an order \mathcal{O} of conductor $\ell^{n} M$, we note that $\mathcal{C \ell}(\mathcal{O}) \simeq \operatorname{SS}_{\mathcal{O}}^{p r}(\rho)$ and define

$$
I=I_{1} \times \ldots \times I_{t} \subseteq \mathbb{Z}^{t} \quad \text { where } I_{j}=\left[-r_{j}, r_{j}\right] .
$$

The security of OSIDH depends on the following maps

$$
I=\prod_{i=1}^{t}\left[-r_{i}, r_{i}\right] \longrightarrow \mathrm{SS}_{\mathcal{O}}^{p r}(\rho) \longrightarrow \mathrm{SS}(p)
$$

Supersingular injectivity bound

How can one insure the injectivity of the map $S_{\mathcal{O}}^{p r}(\rho) \rightarrow \operatorname{SS}(p)$? We set

$$
n+\log _{\ell}(M)+\frac{1}{2} \log _{\ell}\left(\left|\Delta_{K}\right|\right) \leq \frac{1}{2} \log _{\ell}(p)
$$

If (SIB) holds, then the map $\mathrm{SS}_{\mathcal{O}}^{p r}(\rho) \rightarrow(p)$ is injective.

OSIDH PROTOCOL - sculuriy considerations

For an order \mathcal{O} of conductor $\ell^{n} M$, we note that $\mathcal{C}(\mathcal{O}) \simeq \operatorname{SS}_{\mathcal{O}}^{p r}(\rho)$ and define

$$
I=I_{1} \times \ldots \times I_{t} \subseteq \mathbb{Z}^{t} \quad \text { where } I_{j}=\left[-r_{j}, r_{j}\right] .
$$

The security of OSIDH depends on the following maps

$$
I=\prod_{i=1}^{t}\left[-r_{i}, r_{i}\right] \longrightarrow \mathrm{SS}_{\mathcal{O}}^{p r}(\rho) \longrightarrow \operatorname{SS}(p)
$$

Class group covering bound

In order to have a uniform element of $\mathcal{C \ell}(\mathcal{O})$ it is desirable to be able to reach all elements of $\mathrm{Cl}(\mathcal{O})$.

$$
\sum_{i=1}^{t} \log _{\ell}\left(2 r_{i}+1\right) \geq \lambda\left(n+\log _{\ell}(M)+\log _{\ell}\left(h\left(\mathcal{O}_{K}\right)\right)\right)
$$

OSIDH PROTOCOL - securty consIderations

For an order \mathcal{O} of conductor $\ell^{n} M$, we note that $\mathcal{C}(\mathcal{O}) \simeq \operatorname{SS}_{\mathcal{O}}^{p r}(\rho)$ and define

$$
I=I_{1} \times \ldots \times I_{t} \subseteq \mathbb{Z}^{t} \quad \text { where } I_{j}=\left[-r_{j}, r_{j}\right] .
$$

The security of OSIDH depends on the following maps

$$
I=\prod_{i=1}^{t}\left[-r_{i}, r_{i}\right] \longrightarrow \operatorname{SS}_{\mathcal{O}}^{p r}(\rho) \longrightarrow \operatorname{SS}(p)
$$

Minkowski norm bound

The set of elements obtained by random walks should contain no cycle; thus,

$$
\sum_{i=1}^{t} r_{i} \log _{\ell}\left(q_{i}\right) \leq n+\log _{\ell}(M)+\frac{1}{2} \log _{\ell}\left(\left|\Delta_{K}\right| / 4\right)
$$

The attack of Dartois and De Feo exploits the non-injectivity of the map $I \rightarrow \mathrm{SS}_{\mathcal{O}}^{p r}(\rho)$ to recover an endomorphism of E.

COUNTERMEASURES - THE USE OF NON-SPLIT PRIME

Key generation

On one side, A begins with $F=E$.

- Split primes: for each prime q_{i} in \mathcal{P}_{S}, choose a random $s_{i} \in I_{i}$, constructs the q_{i}-isogeny walk of length s_{i} while pushing forward the other direction as well as the q-clouds at each prime q in \mathcal{P}_{A} and \mathcal{P}_{B}.
- Non-split primes: for each prime choose a random walk in the cloud to a new curve F and push forward the remaining unused q-clouds.

The data F and q-isogeny chains at primes q in \mathcal{P}_{s} and q-clouds at primes q in \mathcal{P}_{B} constitute A 's public key.

PARAMETER SELCCTION - an xample

We set $\Delta_{K}=-3$ and $\ell=2$.
We begin with $t=10$ and a bit Bound $B_{s}=32$.

Split Primes

	$q:$	7	13	19	31	37	43	61	67	73	79
$\mathcal{P}_{\boldsymbol{s}}:$	$r:$	11	8	7	6	6	6	5	5	5	5
	$\#:$	23	17	15	13	13	13	11	11	11	11

This gives a logarithmic contribution of

$$
\sum_{j=1}^{10} \log _{2}\left(2 r_{j}+1\right)=37.4569 \ldots
$$

to the entropy of the random walk.
The logarithmic norm, which we must bound is:

$$
\sum_{j=1}^{10} r_{j} \log _{2}\left(q_{j}\right)=306.2115 \ldots(<320=32 \cdot 10)
$$

PARAMETER SELECTION - an xample

We set $\Delta_{K}=-3$ and $\ell=2$.
We begin with $t=10$ and a bit Bound $B_{s}=32$.

Non-Split Primes

We partition the remaining primes up to 163 into sets \mathcal{P}_{A} and \mathcal{P}_{B}, with a radius for the cloud (or eddy), as follows:

	$q:$	2	11	17	41	47	59	83	101	103	109	131	149	151	157
$\mathcal{P}_{A}:$	$r:$	7	2	1	1	1	1	1	1	1	1	1	1	1	1
	$\#:$	128	132	18	42	48	60	84	102	102	108	132	150	150	156
	$q:$	3	5	23	29	53	71	89	97	107	113	127	137	139	163
$\mathcal{P}_{B}:$	$r:$	4	3	1	1	1	1	1	1	1	1	1	1	1	1
	$\#:$	81	150	24	30	54	72	90	96	108	114	126	138	138	162

Both sets leak the horizontal directions for these primes, giving an additional contribution of ≈ 28 bits to the logarithmic norm.
These prime sets each contribute a $\log _{2}(M)$ of 90 bits, such that n must be at least 244 to defeat the lattice-based class group attack.

PARAMETER SELECTION - conclusion

The norm bound suggests using a uniform bound B_{s} on $r_{j} \log _{\ell}\left(q_{j}\right)$ rather than the exponents r_{j}. This gives

$$
\lambda \log _{\ell}(p) \leq \sum_{i=1}^{t} \log _{\ell}\left(2 r_{j}+1\right) \leq \sum_{j=1}^{t} r_{j} \log _{\ell}\left(q_{j}\right) \leq t B_{s}<n+\log _{\ell}(M)
$$

for which ($t=64, B_{s}=16, n=1024$) represent a choice of parameters ensuring injectivity of $I \rightarrow C \ell(\mathcal{O})$.

THANK YOU FOR YOUR ATTENTION

