

ORIENTED SUPERSINGULAR ELLIPTIC CURVES & CLASS GROUP ACTIONS

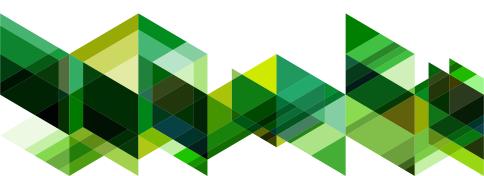
LEONARDO COLÒ & DAVID KOHEL Institut de Mathématiques de Marseille

ALgebraic and combinatorial methods for COding and CRYPTography

CONTENTS

- Orientations and class group actions.
- OSIDH protocol.
- Security considerations.

ORIENTATIONS AND CLASS GROUP ACTIONS

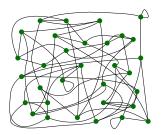


SUPERSINGULAR ISOGENY GRAPHS

The supersingular isogeny graphs are remarkable because the vertex sets are finite : there are $(p + 1)/12 + \epsilon_p$ curves. Moreover

- every supersingular elliptic curve can be defined over \mathbb{F}_{p^2} ;
- all ℓ -isogenies are defined over \mathbb{F}_{p^2} ;
- every endomorphism of *E* is defined over \mathbb{F}_{p^2} .

The lack of a commutative group acting on the set of supersingular elliptic curves/ \mathbb{F}_{p^2} makes the isogeny graph more complicated.



ORIENTATIONS

Let \mathcal{O} be an order in an imaginary quadratic field K.

An \mathcal{O} -orientation on a supersingular elliptic curve E is an embedding

 $\iota: \mathcal{O} \hookrightarrow \operatorname{End}(E).$

A K-orientation is an embedding

$$\iota: K \hookrightarrow \operatorname{End}^0(E) = \operatorname{End}(E) \otimes_{\mathbb{Z}} \mathbb{Q}.$$

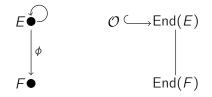
An \mathcal{O} -orientation is *primitive* if

 $\mathcal{O} \simeq \operatorname{End}(E) \cap \iota(K).$

Theorem

The category of *K*-oriented supersingular elliptic curves (E, ι) , whose morphisms are isogenies commuting with the *K*-orientations, is equivalent to the category of elliptic curves with CM by *K*.

ORIENTATIONS - ORIENTING ISOGENIES



Let $\phi : E \to F$ be an isogeny of degree ℓ . A *K*-orientation $\iota : K \hookrightarrow \text{End}^0(E)$ determines a *K*-orientation $\phi_*(\iota) : K \hookrightarrow \text{End}^0(F)$ on *F*, defined by

$$\phi_*(\iota)(lpha) = rac{1}{\ell}\,\phi\circ\iota(lpha)\circ\hat{\phi}.$$

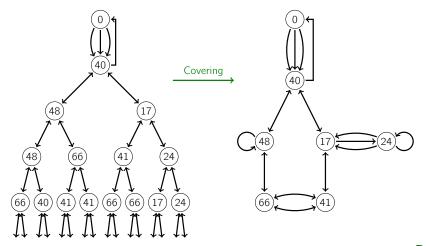
Conversely, given *K*-oriented elliptic curves (E, ι_E) and (F, ι_F) we say that an isogeny $\phi : E \to F$ is *K*-oriented if $\phi_*(\iota_E) = \iota_F$, i.e., if the orientation on *F* is induced by ϕ .

ORIENTED ISOGENY GRAPHS - AN EXAMPLE

L.COLÒ M

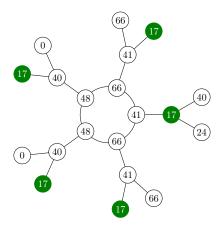
Let p = 71 and E_0/\mathbb{F}_{71} be the supersingular elliptic curve with j(E) = 0oriented by the $\mathcal{O}_K = \mathbb{Z}[\omega]$, where $\omega^2 + \omega + 1 = 0$.

The orientation by $K = \mathbb{Q}[\omega]$ differentiates vertices in the descending paths from E_0 , determining an infinite graph shown here to depth 4:



ORIENTED ISOGENY GRAPHS - yet another example

We let again p = 71 and we consider the isogeny graph oriented by $\mathbb{Z}[\omega_{79}]$ where ω_{79} generates the ring of integers of $\mathbb{Q}(\sqrt{-79})$.



PRIMITIVE ORIENTATIONS

- $SS(p) = \{supersingular elliptic curves over \overline{\mathbb{F}}_p \text{ up to isomorphism}\}.$
- $SS_{\mathcal{O}}(p) = \{\mathcal{O} \text{-oriented s.s. elliptic curves over } \overline{\mathbb{F}}_p \text{ up to } K \text{-isomorphism} \}.$
- $SS_{\mathcal{O}}^{pr}(p) =$ subset of primitive \mathcal{O} -oriented curves.

An element of $SS_{\mathcal{O}}^{pr}(p)$ consists of

- A supersingular elliptic curve $E/\overline{\mathbb{F}}_p$;
- a primitive orientation $\iota : \mathcal{O} \hookrightarrow \operatorname{End}(E)$;
- ▶ a structure of a *p*-orientation which is a homomorphism $\rho : \mathcal{O} \to \overline{\mathbb{F}}_p$.

$$\rho: \mathcal{O} \longrightarrow \mathcal{O}/\mathfrak{p} \xrightarrow{\iota} \operatorname{End}(E)/\mathfrak{P} \hookrightarrow \overline{\mathbb{F}}_{\rho}$$

• $SS_{\mathcal{O}}^{pr}(\rho) =$ set of oriented supersingular elliptic curves with ρ induced by ι .

CLASS GROUP ACTION

The set $SS_{\mathcal{O}}(\rho)$ admits a transitive group action:

$$\begin{aligned} \mathcal{C}\!\ell(\mathcal{O}) \times \mathrm{SS}_{\mathcal{O}}(\rho) &\longrightarrow \ \mathrm{SS}_{\mathcal{O}}(\rho) \\ ([\mathfrak{a}], E) &\longmapsto \ [\mathfrak{a}] \cdot E = E/E[\mathfrak{a}] \end{aligned}$$

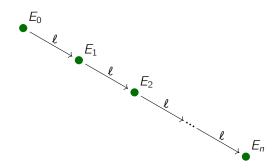
Proposition

The set $SS^{pr}_{\mathcal{O}}(\rho)$ is a torsor for the class group $\mathcal{C}\ell(\mathcal{O})$.

For fixed primitive p-oriented supersingular curve E, we get bijection of sets:

$$\mathcal{C}\!\ell(\mathcal{O}) \longrightarrow \mathrm{SS}^{pr}_{\mathcal{O}}(\rho)$$

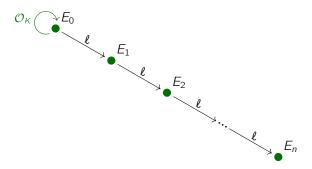
We consider an elliptic curve E_0 with an effective endomorphism ring (eg. $j_0 = 0, 1728$) and a chain of ℓ -isogenies.



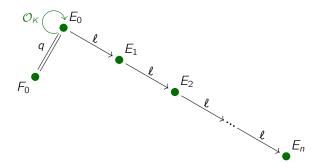
We consider an elliptic curve E_0 with an effective endomorphism ring (eg.

 $j_0 = 0, 1728$) and a chain of ℓ -isogenies.

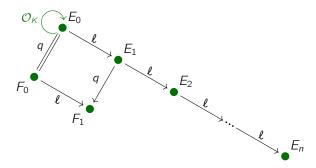
For ℓ = 2 (or 3) a suitable candidate for O_K could be the Gaussian integers Z[i] or the Eisenstein integers Z[ω].



- We consider an elliptic curve E_0 with an effective endomorphism ring (eg. $j_0 = 0, 1728$) and a chain of ℓ -isogenies.
 - Horizontal isogenies must be endomorphisms

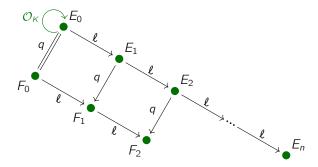


- We consider an elliptic curve E_0 with an effective endomorphism ring (eg. $j_0 = 0, 1728$) and a chain of ℓ -isogenies.
 - We push forward our *q*-orientation obtaining F_1 .



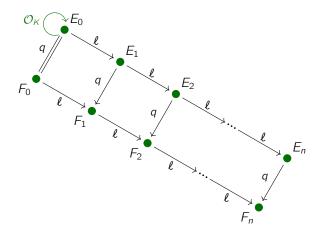
We consider an elliptic curve E_0 with an effective endomorphism ring (eg. $j_0 = 0, 1728$) and a chain of ℓ -isogenies.

• We repeat the process for F_2 .

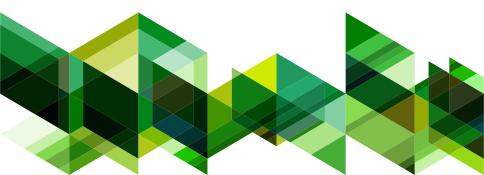


We consider an elliptic curve E_0 with an effective endomorphism ring (eg. $j_0 = 0, 1728$) and a chain of ℓ -isogenies.

• And again till F_n .



OSIDH



PUBLIC DATA: A chain of ℓ -isogenies $E_0 \to E_1 \to \ldots \to E_n$ and a set of splitting primes $\mathfrak{p}_1, \ldots, \mathfrak{p}_t \subseteq \mathcal{O} \subseteq \operatorname{End}(E_n) \cap K \subseteq \mathcal{O}_K$

ALICE

BOB

PUBLIC DATA: A chain of ℓ -isogenies $E_0 \rightarrow E_1 \rightarrow \ldots \rightarrow E_n$ and a set of splitting primes $\mathfrak{p}_1, \ldots, \mathfrak{p}_t \subseteq \mathcal{O} \subseteq \operatorname{End}(E_n) \cap K \subseteq \mathcal{O}_K$ BOB

ALICE

Choose integers in a bound [-r, r]

 (e_1, \ldots, e_t)

 (d_1, \ldots, d_t)

PUBLIC DATA: A chain of ℓ -isogenies $E_0 \to E_1 \to \ldots \to E_n$ and a set of splitting primes $\mathfrak{p}_1, \ldots, \mathfrak{p}_t \subseteq \mathcal{O} \subseteq \operatorname{End}(E_n) \cap K \subseteq \mathcal{O}_K$

, .	ALICE	BOB
Choose integers in a bound $[-r, r]$	(e_1,\ldots,e_t)	(d_1,\ldots,d_t)
Construct an isogenous curve	$F_n = E_n / E_n \left[\mathfrak{p}_1^{e_1} \cdots \mathfrak{p}_t^{e_t} \right]$	$G_n = E_n/E_n \left[\mathfrak{p}_1^{d_1} \cdots \mathfrak{p}_t^{d_t} \right]$

PUBLIC DATA: A chain of ℓ -isogenies $E_0 \to E_1 \to \ldots \to E_n$ and a set of splitting primes $\mathfrak{p}_1, \ldots, \mathfrak{p}_t \subseteq \mathcal{O} \subseteq \operatorname{End}(E_n) \cap K \subseteq \mathcal{O}_K$

Choose integers in a bound [-r, r]Construct an isogenous curve Precompute all directions $\forall i$

imes \mathfrak{p}_1, \ldots	$\ldots, \mathfrak{p}_t \subseteq \mathcal{O} \subseteq \operatorname{End}(\mathcal{E}_n) \cap \mathcal{K} \subseteq$	$\mathcal{O}_{\mathcal{K}}$
	ALICE	BOB
egers $[-r, r]$	(e_1,\ldots,e_t)	(d_1,\ldots,d_t)
an curve	$F_n = E_n / E_n \left[\mathfrak{p}_1^{e_1} \cdots \mathfrak{p}_t^{e_t} \right]$	$G_n = E_n/E_n \left[\mathfrak{p}_1^{d_1}\cdots\mathfrak{p}_t^{d_t}\right]$
te all ∀i	$F_{n,i}^{(-r)} \leftarrow F_{n,i}^{(-r+1)} \leftarrow \ldots \leftarrow F_{n,i}^{(1)} \leftarrow F_n$	$G_{n,i}^{(-r)} \leftarrow G_{n,i}^{(-r+1)} \leftarrow \ldots \leftarrow G_{n,i}^{(1)} \leftarrow G_n$

PUBLIC DATA: A chain of ℓ -isogenies $E_0 \to E_1 \to \ldots \to E_n$ and a set of splitting primes $\mathfrak{p}_1, \ldots, \mathfrak{p}_t \subseteq \mathcal{O} \subseteq \operatorname{End}(E_n) \cap K \subseteq \mathcal{O}_K$

Choose integers in a bound [-r, r]Construct an isogenous curve Precompute all directions $\forall i$... and their conjugates

, , $\mathfrak{p}_t \subseteq \mathcal{O} \subseteq End(E_n) \cap K \subseteq$	\mathcal{O}_{K}
ALICE	BOB
(e_1,\ldots,e_t)	(d_1,\ldots,d_t)
$F_n = E_n / E_n \left[\mathfrak{p}_1^{e_1} \cdots \mathfrak{p}_t^{e_t} \right]$	$G_n = E_n/E_n \left[\mathfrak{p}_1^{d_1} \cdots \mathfrak{p}_t^{d_t} \right]$
$F_{n,i}^{(-r)} \leftarrow F_{n,i}^{(-r+1)} \leftarrow \ldots \leftarrow F_{n,i}^{(1)} \leftarrow F_n$	$G_{n,i}^{(-r)} \leftarrow G_{n,i}^{(-r+1)} \leftarrow \ldots \leftarrow G_{n,i}^{(1)} \leftarrow G_n$
$F_n \rightarrow F_{n,i}^{(1)} \rightarrow \dots \rightarrow F_{n,i}^{(r-1)} \rightarrow F_{n,1}^{(r)}$	$G_n \rightarrow G_{n,i}^{(1)} \rightarrow \dots \rightarrow G_{n,i}^{(r-1)} \rightarrow G_{n,1}^{(r)}$

PUBLIC DATA: A chain of ℓ -isogenies $E_0 \to E_1 \to \ldots \to E_n$ and a set of splitting primes $\mathfrak{p}_1, \ldots, \mathfrak{p}_t \subseteq \mathcal{O} \subseteq \operatorname{End}(E_n) \cap K \subseteq \mathcal{O}_K$

Choose integers in a bound [-r, r]Construct an isogenous curve Precompute all directions $\forall i$... and their conjugates Exchange data

$\mathfrak{p}_t \subseteq \mathcal{O} \subseteq \operatorname{End}(E_n) \cap K \subseteq$	$\mathcal{O}_{\mathcal{K}}$						
ALICE	BOB						
(e_1,\ldots,e_t)	(d_1,\ldots,d_t)						
$F_n = E_n / E_n \left[\mathfrak{p}_1^{e_1} \cdots \mathfrak{p}_t^{e_t} \right]$	$G_n = E_n/E_n \left[\mathfrak{p}_1^{d_1} \cdots \mathfrak{p}_t^{d_t} \right]$						
$F_{n,i}^{(-r)} \leftarrow F_{n,i}^{(-r+1)} \leftarrow \ldots \leftarrow F_{n,i}^{(1)} \leftarrow F_n$	$G_{n,i}^{(-r)} \leftarrow G_{n,i}^{(-r+1)} \leftarrow \ldots \leftarrow G_{n,i}^{(1)} \leftarrow G_n$						
$F_n \rightarrow F_{n,i}^{(1)} \rightarrow \dots \rightarrow F_{n,i}^{(r-1)} \rightarrow F_{n,1}^{(r)}$	$G_n \rightarrow G_{n,i}^{(1)} \rightarrow \dots \rightarrow G_{n,i}^{(r-1)} \rightarrow G_{n,1}^{(r)}$						
G _n +directions	\sim F_n +directions						

PUBLIC DATA: A chain of ℓ -isogenies $E_0 \to E_1 \to \ldots \to E_n$ and a set of splitting primes $\mathfrak{p}_1, \ldots, \mathfrak{p}_t \subseteq \mathcal{O} \subseteq \operatorname{End}(E_n) \cap K \subseteq \mathcal{O}_K$

Choose integers in a bound [-r, r]Construct an isogenous curve Precompute all directions $\forall i$... and their conjugates Exchange data

Compute shared data

., $\mathfrak{p}_t \subseteq \mathcal{O} \subseteq End(E_n) \cap K \subseteq$	$\mathcal{O}_{\mathcal{K}}$
ALICE	BOB
(e_1,\ldots,e_t)	(d_1,\ldots,d_t)
$F_n = E_n / E_n \left[\mathfrak{p}_1^{e_1} \cdots \mathfrak{p}_t^{e_t} \right]$	$G_n = E_n/E_n \left[\mathfrak{p}_1^{d_1} \cdots \mathfrak{p}_t^{d_t} \right]$
$F_{n,i}^{(-r)} \leftarrow F_{n,i}^{(-r+1)} \leftarrow \ldots \leftarrow F_{n,i}^{(1)} \leftarrow F_n$	$G_{n,i}^{(-r)} \leftarrow G_{n,i}^{(-r+1)} \leftarrow \ldots \leftarrow G_{n,i}^{(1)} \leftarrow G_n$
$F_n \rightarrow F_{n,i}^{(1)} \rightarrow \dots \rightarrow F_{n,i}^{(r-1)} \rightarrow F_{n,1}^{(r)}$	$G_n \rightarrow G_{n,i}^{(1)} \rightarrow \dots \rightarrow G_{n,i}^{(r-1)} \rightarrow G_{n,1}^{(r)}$
G _n +directions	\sim F_n +directions
Takes e_i steps in p_i -isogeny chain & push forward information for j > i.	Takes d_i steps in \mathfrak{p}_i -isogeny chain & push forward information for $j > i$.

9

PUBLIC DATA: A chain of ℓ -isogenies $E_0 \to E_1 \to \ldots \to E_n$ and a set of splitting primes $\mathfrak{p}_1, \ldots, \mathfrak{p}_t \subseteq \mathcal{O} \subseteq \operatorname{End}(E_n) \cap K \subseteq \mathcal{O}_K$

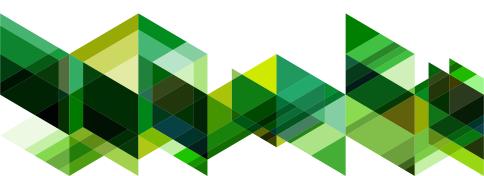
Choose integers in a bound [-r, r]Construct an isogenous curve Precompute all directions $\forall i$... and their conjugates Exchange data

Compute shared data

$\mathfrak{p}_1,\ldots,\mathfrak{p}_t\subseteq\mathcal{O}\subseteqEnd(E_n)\cap K\subseteq$	$= \mathcal{O}_{\mathcal{K}}$
ALICE	BOB
$r] \qquad (e_1,\ldots,e_t)$	(d_1,\ldots,d_t)
$F_n = E_n / E_n \left[\mathfrak{p}_1^{e_1} \cdots \mathfrak{p}_t^{e_t} \right]$	$G_n = E_n/E_n \left[\mathfrak{p}_1^{d_1} \cdots \mathfrak{p}_t^{d_t} \right]$
$F_{n,i}^{(-r)} \leftarrow F_{n,i}^{(-r+1)} \leftarrow \ldots \leftarrow F_{n,i}^{(1)} \leftarrow F_n$	$G_{n,i}^{(-r)} \leftarrow G_{n,i}^{(-r+1)} \leftarrow \ldots \leftarrow G_{n,i}^{(1)} \leftarrow G_n$
$F_n \rightarrow F_{n,i}^{(1)} \rightarrow \dots \rightarrow F_{n,i}^{(r-1)} \rightarrow F_{n,1}^{(r)}$	$G_n \rightarrow G_{n,i}^{(1)} \rightarrow \dots \rightarrow G_{n,i}^{(r-1)} \rightarrow G_{n,1}^{(r)}$
G_n +directions	\checkmark F_n +directions
Takes e_i steps in p_i -isogeny chain & push forward information for j > i.	Takes d_i steps in \mathfrak{p}_i -isogeny chain & push forward information for $j > i$.
they chose $I = \Gamma / \Gamma [ue_1 + d_1]$	$d_t e_t + d_t$

In the end, they share $H_n = E_n/E_n \left[\mathfrak{p}_1^{e_1+d_1} \cdot \ldots \cdot \mathfrak{p}_t^{e_t+d_t} \right]$

SECURITY CONSIDERATIONS



For an order \mathcal{O} of conductor $\ell^n M$, we note that $\mathcal{C}\!\ell(\mathcal{O}) \simeq SS_{\mathcal{O}}^{pr}(\rho)$ and define

$$I = I_1 \times \ldots \times I_t \subseteq \mathbb{Z}^t$$
 where $I_j = [-r_j, r_j]$.

The security of OSIDH depends on the following maps

$$I = \prod_{i=1}^{t} \left[-r_i, r_i \right] \longrightarrow \mathrm{SS}_{\mathcal{O}}^{pr}(\rho) \longrightarrow \mathrm{SS}(\rho)$$

Supersingular covering bound

We say that the map $\mathcal{C}(\mathcal{O}) \simeq SS_{\mathcal{O}}^{pr}(\rho) \longrightarrow SS(p)$ is λ -surjective if

 $p^{\lambda} \leq \# \mathcal{C}\!\ell(\mathcal{O})$

where λ is the logarithmic covering radius. We get

$$\lambda \log_{\ell}(p) \leq n + \log_{\ell}(M) + \log_{\ell}(h(\mathcal{O}_{\mathcal{K}}))$$

For an order \mathcal{O} of conductor $\ell^n M$, we note that $\mathcal{C}(\mathcal{O}) \simeq SS^{pr}_{\mathcal{O}}(\rho)$ and define

$$I = I_1 \times \ldots \times I_t \subseteq \mathbb{Z}^t$$
 where $I_j = [-r_j, r_j]$.

The security of OSIDH depends on the following maps

$$I = \prod_{i=1}^{t} [-r_i, r_i] \longrightarrow SS_{\mathcal{O}}^{pr}(\rho) \longrightarrow SS(\rho)$$

Supersingular injectivity bound

How can one insure the injectivity of the map $SS_{\mathcal{O}}^{pr}(\rho) \to SS(\rho)$? We set

$$n + \log_{\ell}(M) + \frac{1}{2}\log_{\ell}(|\Delta_{\kappa}|) \leq \frac{1}{2}\log_{\ell}(p)$$

If (SIB) holds, then the map $SS_{\mathcal{O}}^{pr}(\rho) \to (p)$ is injective.

For an order \mathcal{O} of conductor $\ell^n M$, we note that $\mathcal{C}\!\ell(\mathcal{O}) \simeq SS^{pr}_{\mathcal{O}}(\rho)$ and define

$$I = I_1 \times \ldots \times I_t \subseteq \mathbb{Z}^t$$
 where $I_j = [-r_j, r_j]$.

The security of OSIDH depends on the following maps

$$I = \prod_{i=1}^{t} [-r_i, r_i] \longrightarrow SS_{\mathcal{O}}^{pr}(\rho) \longrightarrow SS(p)$$

Class group covering bound

In order to have a uniform element of $\mathcal{C}(\mathcal{O})$ it is desirable to be able to reach all elements of $\mathcal{C}(\mathcal{O})$.

$$\sum_{i=1}^{t} \log_{\ell}(2r_i+1) \geq \lambda \left(n + \log_{\ell}(\mathcal{M}) + \log_{\ell}(h(\mathcal{O}_{\mathcal{K}}))\right)$$

For an order \mathcal{O} of conductor $\ell^n M$, we note that $\mathcal{C}\!\ell(\mathcal{O}) \simeq SS_{\mathcal{O}}^{pr}(\rho)$ and define

$$I = I_1 \times \ldots \times I_t \subseteq \mathbb{Z}^t$$
 where $I_j = [-r_j, r_j]$.

The security of OSIDH depends on the following maps

$$I = \prod_{i=1}^{t} [-r_i, r_i] \longrightarrow SS_{\mathcal{O}}^{pr}(\rho) \longrightarrow SS(\rho)$$

Minkowski norm bound

The set of elements obtained by random walks should contain no cycle; thus,

$$\sum_{i=1}^{t} r_i \log_{\ell}(q_i) \leq n + \log_{\ell}(M) + \frac{1}{2} \log_{\ell}(|\Delta_{\kappa}|/4)$$

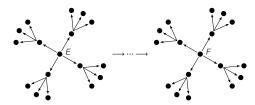
The attack of Dartois and De Feo exploits the non-injectivity of the map $I \to SS_{\mathcal{O}}^{pr}(\rho)$ to recover an endomorphism of *E*.

Key generation

On one side, A begins with F = E.

- Split primes: for each prime q_i in P_S, choose a random s_i ∈ l_i, constructs the q_i-isogeny walk of length s_i while pushing forward the other direction as well as the q-clouds at each prime q in P_A and P_B.
- ► Non-split primes: for each prime choose a random walk in the cloud to a new curve *F* and push forward the remaining unused *q*-clouds.

The data F and q-isogeny chains at primes q in \mathcal{P}_s and q-clouds at primes q in \mathcal{P}_B constitute A's public key.



PARAMETER SELECTION - AN EXAMPLE

We set $\Delta_{\mathcal{K}} = -3$ and $\ell = 2$.

We begin with t = 10 and a bit Bound $B_s = 32$.

Split Primes

	<i>q</i> :	7	13	19	31	37	43	61	67	73	79	
\mathcal{P}_s :	<i>r</i> :	11	8	7	6	6	6	5	5	5	5	
	#:	23	17	15	13	13	13	11	11	11	11	

This gives a logarithmic contribution of

$$\sum_{j=1}^{10} \log_2(2r_j+1) = 37.4569...$$

to the entropy of the random walk.

The logarithmic norm, which we must bound is:

$$\sum_{j=1}^{10} r_j \log_2(q_j) = 306.2115...(<320 = 32 \cdot 10).$$

PARAMETER SELECTION - AN EXAMPLE

We set $\Delta_{\mathcal{K}} = -3$ and $\ell = 2$. We begin with t = 10 and a bit Bound $B_s = 32$.

Non-Split Primes

We partition the remaining primes up to 163 into sets \mathcal{P}_A and \mathcal{P}_B , with a radius for the cloud (or eddy), as follows:

	<i>q</i> :	2	11	17	41	47	59	83	101	103	3 109) 13	1 14	9 151	. 157
$\mathcal{P}_{\mathcal{A}}$:	<i>r</i> :	7	2	1	1	1	1	1	1	1	1	1	1	1	1
	#:	128	132	18	42	48	60	84	102	102	2 108	3 132	2 15	0 150) 156
	q :	3	5	23	29	53	71	89	97	107	113	127	137	139	163
\mathcal{P}_B :	<i>r</i> :	4	3	1	1	1	1	1	1	1	1	1	1	1	1
	#:	81	150	24	30	54	72	90	96	108	114	126	138	138	162

Both sets leak the horizontal directions for these primes, giving an additional contribution of ≈ 28 bits to the logarithmic norm.

These prime sets each contribute a $\log_2(M)$ of 90 bits, such that *n* must be at least 244 to defeat the lattice-based class group attack.

The norm bound suggests using a uniform bound B_s on $r_j \log_{\ell}(q_j)$ rather than the exponents r_j . This gives

$$\lambda \log_{\ell}(p) \leq \sum_{i=1}^{t} \log_{\ell}(2r_j+1) \leq \sum_{j=1}^{t} r_j \log_{\ell}(q_j) \leq tB_s < n + \log_{\ell}(M)$$

for which $(t = 64, B_s = 16, n = 1024)$ represent a choice of parameters ensuring injectivity of $I \rightarrow Cl(O)$.

THANK YOU FOR YOUR ATTENTION

