

ORIENTED SUPERSINGULAR ELLIPTIC CURVES & CLASS GROUP ACTIONS

LEONARDO COLÒ & DAVID KOHEL Institut de Mathématiques de Marseille

ISOGENY GRAPHS

Definition

Given an elliptic curve E over k, and a finite set of primes S, we can associate an isogeny graph $G_S(E)$

- \blacktriangleright whose vertices are elliptic curves isogenous to E over k, and
- lacktriangle whose edges are isogenies of degree $\ell \in S$.

The vertices are defined up to \bar{k} -isomorphism and the edges from a given vertex are defined up to a \bar{k} -isomorphism of the codomain.

If
$$S = \{\ell\}$$
, then we call G an ℓ -isogeny graph, G_{ℓ} .

For an elliptic curve E/k and prime $\ell \neq \mathtt{char}(k)$, the full ℓ -torsion subgroup is a 2-dimensional \mathbb{F}_{ℓ} -vector space:

$$E[\ell] = \left\{ P \in E[\bar{k}] \,\middle|\, \ell P = O \right\} \simeq \mathbb{F}_{\ell}^2$$

Consequently, the set of cyclic subgroups is in bijection with $\mathbb{P}^1(\mathbb{F}_{\ell})$, which in turn are in bijection with the set of ℓ -isogenies from E.

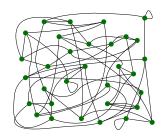
Thus, the ℓ -isogeny graph of E is $(\ell + 1)$ -regular (as a directed multigraph).

SUPERSINGULAR ISOGENY GRAPHS

The supersingular isogeny graphs are remarkable because the vertex sets are finite : there are $(p+1)/12+\epsilon_p$ curves. Moreover

- \blacktriangleright every supersingular elliptic curve can be defined over $\mathbb{F}_{p^2};$
- $\blacktriangleright \ \ \text{all ℓ-isogenies are defined over \mathbb{F}_{p^2};}$
- $lackbox{ every endomorphism of E is defined over \mathbb{F}_{p^2}.}$

The lack of a commutative group acting on the set of supersingular elliptic curves/ \mathbb{F}_{p^2} makes the isogeny graph more complicated.



SUPERSINGULAR ISOGENY GRAPHS - SPECIAL VERTICES

Supersingular curves with j-invariants 0 and 1728 have extra automorphisms, besides $[\pm 1]$.

▶ E_{1728} is supersingular if $p \equiv 3 \mod 4$

$$\mathrm{Aut}(E_{1728}) = \{ [\pm 1], [\pm i] \} \qquad \mathrm{End}(E_{1728}) = \mathbb{Z} \langle [i], \frac{1+\pi_p}{2} \rangle$$

where [i](x,y)=(-x,iy) for $i^2=-1$ in \mathbb{F}_{p^2} and $\pi_p(x,y)=(x^p,y^p)$ is Frobenius.

► E_0 is supersingular if $p \equiv 2 \mod 3$

$$\operatorname{Aut}(E_0) = \left\{ [\pm 1], [\pm \zeta_3], [\pm \zeta_3^2] \right\} \qquad \operatorname{End}(E_0) = \mathbb{Z} \langle [\zeta_3], \pi_p \rangle$$

where $[\zeta_3](x,y) = (\zeta_3 x, y)$ for $\zeta_3^2 + \zeta_3 + 1 = 0$ in \mathbb{F}_{p^2} .

Because of these extra automorphisms, supersingular isogeny graphs may fail to really be undirected graphs.

Since this issue occurs only at neighbours of ${\cal E}_0$ and ${\cal E}_{1728}$, we usually forget this subtlety.

ORIENTATIONS

Let \mathcal{O} be an order in an imaginary quadratic field K. An \mathcal{O} -orientation on a supersingular elliptic curve E is an embedding $\iota:\mathcal{O}\hookrightarrow \mathsf{End}(E)$, and a K-orientation is an embedding $\iota:K\hookrightarrow \mathsf{End}^0(E)=\mathsf{End}(E)\otimes_{\mathbb{Z}}\mathbb{Q}$. An \mathcal{O} -orientation is *primitive* if $\mathcal{O}\simeq \mathsf{End}(E)\cap\iota(K)$.

Theorem

The category of K-oriented supersingular elliptic curves (E,ι) , whose morphisms are isogenies commuting with the K-orientations, is equivalent to the category of elliptic curves with CM by K.

Let $\phi: E \to F$ be an isogeny of degree ℓ . A K-orientation $\iota: K \hookrightarrow \operatorname{End}^0(E)$ determines a K-orientation $\phi_*(\iota): K \hookrightarrow \operatorname{End}^0(F)$ on F, defined by

$$\phi_*(\iota)(\alpha) = \frac{1}{\ell} \, \phi \circ \iota(\alpha) \circ \hat{\phi}.$$

Conversely, given K-oriented elliptic curves (E,ι_E) and (F,ι_F) we say that an isogeny $\phi:E\to F$ is K-oriented if $\phi_*(\iota_E)=\iota_F$, i.e., if the orientation on F is induced by ϕ .

ORIENTED ISOGENY GRAPHS - VERTICES & EDGES

Two K-oriented curves are isomorphic if and ony if there exists a K-oriented isomorphism between them. We denote $G_S(E,K)$ the S-isogeny graph of K-oriented supersingular elliptic curves over \mathbb{F}_{p^2} whose vertices are isomorphism classes of K-oriented supersingular elliptic curves $/\mathbb{F}_{p^2}$ and whose edges are equivalence classes of K-oriented isogenies of degree in S.

Proposition*

The only vertices of $G_\ell(E,K)$ with extra automorphisms are (E,ι) where either

- \blacktriangleright $E=E_{1728}$ and $\iota(i)=[\pm i]$ or
- $\blacktriangleright \ E = E_0 \text{ and } \iota(\zeta_3) = [\pm \zeta_3].$

Then (E,ι) has out-degree $\ell+1$, except at the oriented curves with extra automorphisms, in which case thise degree is $2(\ell+1-r_\ell)/|\mathrm{Aut}(E)|+r_\ell$ where $|\mathrm{Aut}(E)|r_\ell$ is the number of elements of $\mathcal O$ of norm ℓ .

^{*}Arpin, S. and Chen, M. and Lauter, K.E. and Scheidler, R. and Stange, K.E. and Tran, H.T.N. - Orientations and cycles in supersingular isogeny graphs

ORIENTED ISOGENY GRAPHS - STRUCTURE

The orientation by a quadratic imaginary field gives to supersingular isogeny graphs the rigid structure of a volcano. It also differentiates vertices in the descending paths from the crater, determining an infinite graph.

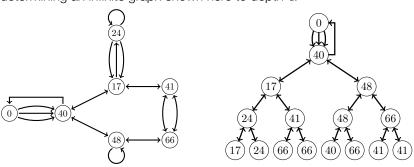
 $G_{\ell}(E,K)$ consists of connected components, each of which is a volcano.

- ▶ The crater consists of K-oriented elliptic curves which are \mathcal{O} -primitive for some fixed ℓ -fundamental order \mathcal{O} of K.
- ▶ Oriented curves at depth k are primitively oriented by orders of index ℓ^k in \mathcal{O} .
- We recover the standar terminology for oriented isogenies:
 - If $\mathcal{O} = \mathcal{O}'$ we say that ϕ is horizontal;
 - If $\mathcal{O} \supsetneq \mathcal{O}'$ we say that ϕ is ascending;
 - If $\mathcal{O} \subsetneq \mathcal{O}'$ we say that ϕ is descending.

ORIENTED ISOGENY GRAPHS - AN EXAMPLE

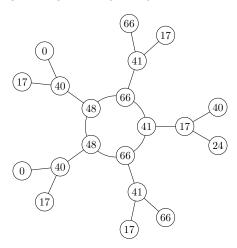
Let E_0/\mathbb{F}_{71} be the supersingular elliptic curve with j(E)=0, oriented by the order $\mathcal{O}_K=\mathbb{Z}[\omega]$, where $\omega^2+\omega+1=0$. The unoriented 2-isogeny graph is the finite graph on the left.

The orientation by $K=\mathbb{Q}[\omega]$ differentiates vertices in the descending paths from E_0 , determining an infinite graph shown here to depth 4:



ORIENTED ISOGENY GRAPHS - YET ANOTHER EXAMPLE

We let again p=71 and we consider the isogeny graph oriented by $\mathbb{Z}[\omega_{79}]$ where ω_{79} generates the ring of integers of $\mathbb{Q}(\sqrt{-79})$.



ISOGENY CHAINS

Definition

An ℓ -isogeny chain of length n from E_0 to E is a sequence of isogenies of degree ℓ :

$$E_0 \xrightarrow{\phi_0} E_1 \xrightarrow{\phi_1} E_2 \xrightarrow{\phi_2} \dots \xrightarrow{\phi_{n-1}} E_n = E.$$

The ℓ -isogeny chain is without backtracking if $\ker \ (\phi_{i+1} \circ \phi_i) \neq E_i[\ell], \ \forall i.$ The isogeny chain is descending (or ascending, or horizontal) if each ϕ_i is descending (or ascending, or horizontal, respectively).

The dual isogeny of ϕ_i is the only isogeny ϕ_{i+1} satisfying $\ker (\phi_{i+1} \circ \phi_i) = E_i[\ell]$. Thus, an isogeny chain is without backtracking if and only if the composition of two consecutive isogenies is cyclic.

Lemma

The composition of the isogenies in an ℓ -isogeny chain is cyclic if and only if the ℓ -isogeny chain is without backtracking.

PRIMITIVE ORIENTATIONS

- ▶ $SS(p) = \{$ supersingular elliptic curves over $\overline{\mathbb{F}}_p$ up to isomorphism $\}$.
- $\blacktriangleright \ \mathsf{SS}_{\mathcal{O}}(p) = \{ \mathcal{O} \text{-oriented s.s. elliptic curves over } \overline{\mathbb{F}}_p \text{ up to } K \text{-isomorphism} \}.$
- $\blacktriangleright \ \mathsf{SS}^{pr}_{\mathcal{O}}(p) = \text{subset of primitive \mathcal{O}-oriented curves}.$

An element of $SS_{\mathcal{O}}^{pr}(p)$ consists of

- $\blacktriangleright \ \ {\rm A \ supersingular \ elliptic \ curve} \ E/\overline{\mathbb{F}}_p; \\$
- ▶ a primitive orientation $\iota : \mathcal{O} \hookrightarrow \text{End}(E)$;
- lacktriangle a structure of a p-orientation which is a homomorphism $\rho:\mathcal{O}\to\overline{\mathbb{F}}_p$.

Note that $\operatorname{End}(E)$ is equipped with a p-orientation $\rho:\operatorname{End}(E)\hookrightarrow\overline{\mathbb{F}}_p.$

We denote by $\mathrm{SS}_{\mathcal{O}}(\rho)$ the set of oriented supersingular elliptic curves with ρ induced by ι and $\mathrm{End}(E)/\mathfrak{P}\hookrightarrow\overline{\mathbb{F}}_p$, and $\mathrm{SS}_{\mathcal{O}}(\overline{\rho})$ the opposite p-orientation class.

THE SET OF PRIMITIVE P-ORIENTED CURVES

Since $K \hookrightarrow \mathfrak{A}$, then

- ▶ If p splits in K then $SS_{\mathcal{O}}^{pr}(p)$ is empty.
- ▶ If p ramifies in K then $\rho = \overline{\rho}$ and then

$$\mathsf{SS}^{pr}_{\mathcal{O}}(p) = \mathsf{SS}^{pr}_{\mathcal{O}}(\rho) = \mathsf{SS}^{pr}_{\mathcal{O}}(\overline{\rho})$$

▶ If p is inert in K then $SS_{\mathcal{O}}(p)$ decomposes in

$$\begin{split} \mathsf{SS}^{pr}_{\mathcal{O}}(p) &= \mathsf{SS}^{pr}_{\mathcal{O}}(\rho) \cup \mathsf{SS}^{pr}_{\mathcal{O}}(\overline{\rho}) \\ &= \mathsf{SS}^{pr}_{\mathcal{O}}(\rho) \cup \mathsf{SS}^{pr}_{\mathcal{O}}(\rho)^{\sigma} \end{split}$$

CLASS GROUP ACTION

The set $SS_{\mathcal{O}}(p)$ admits a transitive group action:

$$\begin{split} \mathcal{C}\!\ell(\mathcal{O}) \times \mathsf{SS}_{\mathcal{O}}(p) &\longrightarrow \; \mathsf{SS}_{\mathcal{O}}(p) \\ ([\mathfrak{a}]\,, E) &\longmapsto \; [\mathfrak{a}] \cdot E = E/E[\mathfrak{a}] \end{split}$$

Proposition

The set $\mathrm{SS}^{pr}_{\mathcal{O}}(\rho)$ is a torsor for the class group $\mathcal{C}\!\ell(\mathcal{O}).$

In particular, for fixed primitive p-oriented supersingular elliptic curve E, we obtain a bijection of sets:

$$\begin{array}{ccc} \mathcal{C}\!\ell(\mathcal{O}) \longrightarrow & \mathsf{SS}^{pr}_{\mathcal{O}}(\rho) \\ [\mathfrak{a}] \longmapsto & [\mathfrak{a}] \cdot E \end{array}$$

EFFECTIVE CLASS GROUP ACTION

The theory of complex multiplication relates the geometry of isogenies to the arithmetic Galois action on elliptic curves in characteristic zero, mediated by the map of $\mathcal{C}\ell(\mathcal{O})$ into each.

Over a finite field, we use the geometric action by isogenies to recover the class group action. In particular we describe the action of $\mathcal{C}\!\ell(\mathcal{O})$ on ℓ -isogeny chains in the *whirlpool*.

Suppose that (E_i,ϕ_i) is a descending $\ell\text{-isogeny}$ chain with

$$\mathcal{O}_K\subseteq \operatorname{End}(E_0),\dots,\mathcal{O}=\mathbb{Z}+\ell^n\mathcal{O}_K\subseteq \operatorname{End}(E_n).$$

If $\mathfrak q$ is a split prime in $\mathcal O_K$ over $q\neq \ell, p$,then the isogeny

$$\psi_0:E_0\to F_0=E_0/E_0[\mathfrak{q}]$$

can be extended to the ℓ -isogeny chain by pushing forward the cyclic group $C_0=E_0[\mathfrak{q}]$:

$$C_0 = E_0[\mathfrak{q}], C_1 = \phi_0(C_0), \dots, C_n = \phi_{n-1}(C_{n-1}),$$

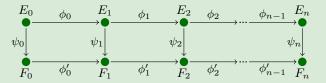
and defining $F_i = E_i/C_i$.

LADDERS

This construction motivates the following definition.

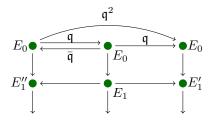
Definition

An ℓ -ladder of length n and degree q is a commutative diagram of ℓ -isogeny chains (E_i,ϕ_i) , (F_i,ϕ_i') of length n connected by q-isogenies $\psi_i:E_i\to F_i$



If ψ_0 is as above $((\psi_0)=E_0[\mathfrak{q}])$, the ladder encodes the action of $\mathcal{C}\!\ell(\mathcal{O})$ on ℓ -isogeny chains, and consequently on elliptic curves at depth n.

DIFFERENTIATING CONJUGATE IDEAL CLASSES



 $E_i' \neq E_i''$ if and only if $\mathfrak{q}^2 \cap \mathcal{O}_i$ is not principal and the probability that a random ideal in \mathcal{O}_i is principal is $1/h(\mathcal{O}_i)$. In fact, we can do better; we write $\mathcal{O}_K = \mathbb{Z}[\omega]$ and we observe that if \mathfrak{q}^2 was principal, then

$$q^2 = \mathsf{N}(\mathfrak{q}^2) = \mathsf{N}(a + b\ell^i\omega)$$

since it would be generated by an element of $\mathcal{O}_i = \mathbb{Z} + \ell^i \mathcal{O}_K$. Now

$$N(a+b\ell^i) = a^2 \pm abt\ell^i + b^2s\ell^{2i}$$
 where $\omega^2 + t\omega + s = 0$

Thus, as soon as $\ell^{2i} \gg q^2$, we are guaranteed that \mathfrak{q}^2 is not principal.

AN EQUIVALENCE OF CATEGORIES

Quadratic forms								
(a, b, c)								

Ideal classes
$$\left[(a, \frac{-b+\sqrt{\Delta}}{2})\right]$$

K-lattices $a\mathbb{Z} + \frac{-b\sqrt{\Delta}}{2}\mathbb{Z}$

$$K$$
-lattices

$$[\mathfrak{a}] = [(\alpha,\beta)]$$

$$\frac{N(\alpha x - \beta y)}{N(\mathfrak{a})}$$

$$\alpha \mathbb{Z} + \beta \mathbb{Z}$$

$$K$$
-lattices

$$\omega_1 \mathbb{Z} + \omega_2 \mathbb{Z}$$

$$\tfrac{N(\omega_1x-\omega_2y)}{N(\omega_1)}$$

$$(\omega_1,\omega_2)$$

INITIALIZING THE LADDER - AN EXAMPLE

Suppose $D_K=-3$, and $\ell=2$; we note that for all $n\geq 3$, that

$$\mathcal{C}\ell(\mathcal{O}_n) \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2^{n-2}\mathbb{Z}$$

and in particular, $\mathcal{C}\!\ell(\mathcal{O}_n)[2]$ consist of the classes of binary quadratic forms

$$\{\langle 1,0,|D_K|\ell^{2(n-1)}\rangle,\langle |D_K|,0,\ell^{2(n-1)}\rangle,\langle \ell^2,\ell^2,n_1\rangle,\langle \ell^2|D_K|,\ell^2|D_K|,n_2\rangle\}.$$

where $\ell^4 - 4\ell^2 n_1 = \ell^4 |D_K|^2 - 4\ell^2 |D_K| n_2 = -\ell^{2n} |D_K|$, whence

$$n_1 = 1 + \ell^{2(n-2)} |D_K| \text{ and } n_2 = |D_K| + \ell^{2(n-2)}.$$

For n=3, the form $\langle 12,12,7\rangle$ reduces to $\langle 7,2,7\rangle$ and the reduced representatives are:

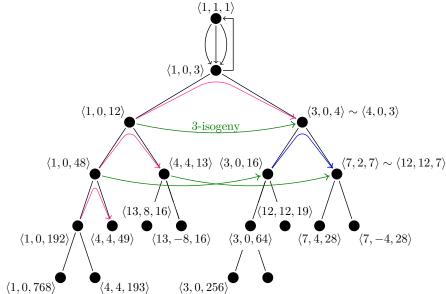
$$\{\langle 1, 0, 48 \rangle, \langle 3, 0, 16 \rangle, \langle 4, 4, 13 \rangle, \langle 7, 2, 7 \rangle\}.$$

but for for $n \ge 4$, since $12 < n_2$, the forms

$$\{\langle 1, 0, 3 \cdot 4^{n-1} \rangle, \langle 3, 0, 4^{n-1} \rangle, \langle 4, 4, n_1 \rangle, \langle 12, 12, n_2 \rangle \}$$

are reduced.

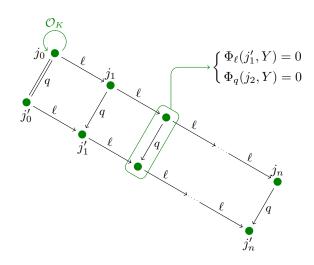
INITIALIZING THE LADDER - A PICTURE



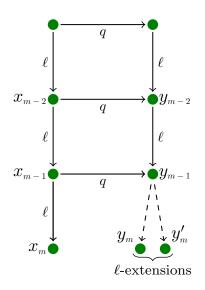
INITIALIZING THE LADDER - A TABLE

q	m	f_m	$[f_m]$	$[f_{m-1}]$
7	4	$\langle 7, 4, 28 \rangle$	$[\langle 7, 4, 28 \rangle]$	$[\langle 7, 2, 7 \rangle]$
13	4	$\langle 13, 8, 16 \rangle$	$[\langle 13, 8, 16 \rangle]$	$[\langle 4, 4, 13 \rangle]$
19	5	$\langle 19, 14, 43 \rangle$	$[\langle 19, 14, 43 \rangle]$	$[\langle 12, 12, 19 \rangle]$
31	4	$\langle 31, 10, 7 \rangle$	$[\langle 7, 4, 28 \rangle]$	$[\langle 7, 2, 7 \rangle]$
37	4	$\langle 37, 34, 13 \rangle$	$[\langle 13, -8, 16 \rangle]$	$[\langle 4, 4, 13 \rangle]$
43	5	$\langle 43, 14, 19 \rangle$	$[\langle 19, -14, 43 \rangle]$	$[\langle 12, 12, 19 \rangle]$
61	4	$\langle 61, 56, 16 \rangle$	$[\langle 13, -8, 16 \rangle]$	$[\langle 4, 4, 13 \rangle]$
67	6	$\langle 67, 24, 48 \rangle$	$[\langle 48, -24, 67 \rangle]$	$[\langle 12, 12, 67 \rangle]$
73	5	$\langle 73, 40, 16 \rangle$	$[\langle 16, -8, 49 \rangle]$	$[\langle 4, 4, 49 \rangle]$
79	4	$\langle 79, 38, 7 \rangle$	$[\langle 7, 4, 28 \rangle]$	$[\langle 7, 2, 7 \rangle]$
97	5	$\langle 97, 56, 16 \rangle$	$[\langle 16, 8, 49 \rangle]$	$[\langle 4, 4, 49 \rangle]$
103	4	$\langle 103, 46, 7 \rangle$	$[\langle 7, -4, 28 \rangle]$	$[\langle 7, 2, 7 \rangle]$
109	4	$\langle 109, 70, 13 \rangle$	$[\langle 13, 8, 16 \rangle]$	$[\langle 4, 4, 13 \rangle]$
127	4	$\langle 127, 116, 28 \rangle$	$[\langle 7, 4, 28 \rangle]$	$[\langle 7, 2, 7 \rangle]$

COMPLETING SQUARES OF ISOGENIES



EXTENDING THE LADDER



Let $\ell=2$.

▶ The two ℓ -extensions are determined by a quadratic polynomial (deduced from y_{m-1}, y_{m-2} :

$$\phi_\ell(y) = 0$$

We can solve for y_m, y_m' , its roots.

 $\begin{tabular}{l} \begin{tabular}{l} \begin{tab$

$$\phi_q(y) \mod \phi_\ell(y)$$

Indeed

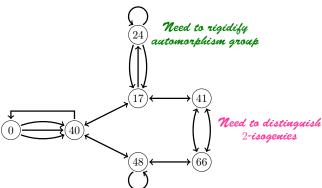
$$\Phi_q(x,y) \equiv \phi_q(y) \ \operatorname{mod} \ (x-x_m,\phi_\ell(y))$$

There are multiple reasons to add level structure to our construction:

▶ With an ℓ -level structure, the extension of ℓ -isogenies by modular correspondences allows one to automatically remove the dual isogeny (backtracking): there are ℓ rather than $\ell+1$ extensions.

There are multiple reasons to add level structure to our construction:

- ▶ With an ℓ -level structure, the extension of ℓ -isogenies by modular correspondences allows one to automatically remove the dual isogeny (backtracking): there are ℓ rather than $\ell+1$ extensions.
- ► The modular isogeny chain is a potentially-non injective image of the isogeny chain.



There are multiple reasons to add level structure to our construction:

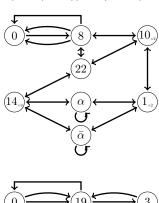
- ▶ With an ℓ -level structure, the extension of ℓ -isogenies by modular correspondences allows one to automatically remove the dual isogeny (backtracking): there are ℓ rather than $\ell+1$ extensions.
- ► The modular isogeny chain is a potentially-non injective image of the isogeny chain.
- ▶ Rigidifying automorphisms should also shorten the distance to which we need to go in order to differentiate 2 points (two torsion of $\mathcal{C}\ell(\mathcal{O})$ may lift to non 2-torsion point in $\mathcal{C}\ell(\mathcal{O},\Gamma)$).

There are multiple reasons to add level structure to our construction:

- ▶ With an ℓ -level structure, the extension of ℓ -isogenies by modular correspondences allows one to automatically remove the dual isogeny (backtracking): there are ℓ rather than $\ell+1$ extensions.
- ► The modular isogeny chain is a potentially-non injective image of the isogeny chain.
- ▶ Rigidifying automorphisms should also shorten the distance to which we need to go in order to differentiate 2 points (two torsion of $\mathcal{C}\ell(\mathcal{O})$ may lift to non 2-torsion point in $\mathcal{C}\ell(\mathcal{O},\Gamma)$).
- ightharpoonup q-modular polynomial of higher level are smaller.

ISOGENY GRAPHS WITH LEVEL STRUCTURE

For any congruence subgroup Γ of level coprime to the characteristic, we have a covering $G_S(E,\Gamma) \to G_S(E)$ whose vertices are pairs $(E,\Gamma(P,Q))$ of supersingular elliptic curves/ \mathbb{F}_{p^2} and a Γ -level structure, and edges are isogenies $\psi:(E,\Gamma(P,Q))\to(E',\Gamma(P',Q'))$ such that $\psi(\Gamma(P,Q))=\Gamma(P',Q')$.



Eg. $\Gamma_0(N)$ -structures.

Vertices (E,G) with $G \leq E[N]$ of order N $\operatorname{End}(E,G) = \{\alpha \in \operatorname{End}(E) \,|\, \alpha(G) \subseteq G\}$ isomorphic to Eichler order.

On the left the $\Gamma_0(3)$ supersingular 2-isogeny graph.

 $14 \leftrightarrow \{(E_0,G_1),(E_0,G_2),(E_0,G_3)\}$ where G_1,G_2,G_3 maps to each other under the automorphism of E_0 ; they define 3 isogenies to E_3 .

ORIENTED ISOGENY GRAPHS WITH LEVEL STRUCTURE

We will write $G_S(\operatorname{SS}_K(p,\Gamma))$ or $G_S(\operatorname{SS}_{\mathcal{O}}(p,\Gamma))$ for the supersingular isogeny graphs oriented by K with Γ -level structure.

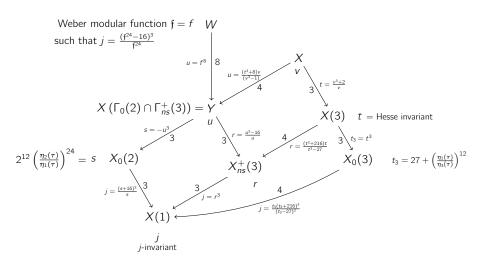
Once again we have covers

$$G_S(\operatorname{SS}_K(p,\Gamma)) \to G_S(E,K) \qquad G_S(\operatorname{SS}_{\mathcal{O}}(p,\Gamma)) \to G_S(E,\mathcal{O})$$

The action of ideals through isogenies lets us define an action on $G_S(\mathrm{SS}_{\mathcal{O}}(p,\Gamma))$ by a ray class group $\mathscr{C}\!\ell(\mathcal{O},\Gamma)$

$$\begin{split} \mathscr{C}\!\ell(\mathcal{O},\Gamma) \times \mathsf{SS}_{\mathcal{O}}(p,\Gamma) &\longrightarrow \mathsf{SS}(p,\Gamma) \\ ([\mathfrak{a}],(E,\Gamma(P,Q))) &\longrightarrow (\phi_{\mathfrak{a}}(E),\Gamma(\phi_{\mathfrak{a}}(P),\phi_{\mathfrak{a}}(Q))) \end{split}$$

SOME MODULAR CURVES OF INTEREST



WEBER INITIALIZATIONS

Let u be a supersingular value of the Weber function,

$$r = u^3 \qquad t = -u^8 \qquad s = t^3$$

along the chain $\mathcal{W}_8 \to Y \to X_0(2) \to X(1)$. we get

$$\Psi_2(x,y) = (x^2-y)y + 16x \qquad \Psi_3(x,y) = x^4 - x^3y^3 + 8xy + y^4$$

The elliptic curves associated to Weber invariants are the fiber in the family:

$$y^2 + xy = x^3 - \frac{1}{u^{24} - 64}x$$

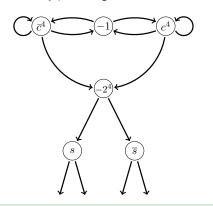
over u on the Weber curve.

The initial values with which to build the public ℓ -isogeny chains are

D	j_0	s_0	t_0	D	j_1	s_1	t_1
-3	0	-2^{4}	$-(\sqrt[3]{2})^4$	-12	2^415^3	-2^{8}	$-(\sqrt[3]{2})^8$
-4	12^{3}	2^{3}	$\stackrel{\cdot}{2}$	-16	66^{3}	2^{9}	2^3
-7	-15^{3}	-1	-1	-28	255^{3}	-2^{12}	-2^{4}
-8	20^{3}	2^{6}	2^{2}	-32	j_1	t_{1}^{3}	$2^3(\sqrt{2}+1)$

WEBER INITIALIZATIONS - DISCRIMINANT — 7

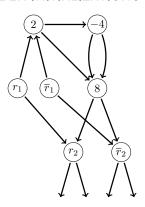
Endomorphism ring is small: generated by an endomorphism of degree 2 we avoid any pathologies associated with the extra automorphisms.



- $ightharpoonup t_0 = -1$ and c root of $x^2 x + 2$.
- ▶ c^4 and \bar{c}^4 also t-values over $j=-15^3$.
- $\Psi_2(-1,c^4)=\Psi_2(-1,\bar{c}^4)=0, \mbox{ the two extensions correspond to the horizontal 2-isogenies.}$
- $\Psi_2(c^4,c^4)=\Psi_2(c^4,-2^4)=0 \text{: the } \\ \text{former enters a cycle the latter } \\ \text{induces a descending isogeny.}$

Initialization: (t_0,t_1,t_2,\dots) beginning with $(-1,c^4,-2^4,\dots)$. Successive solutions to $\Psi_2(t_i,t_{i+1})=0$ are necessarily descending. Extension: random choice of root t_{i+1} of $\Psi_2(t_i,x)$.

WEBER INITIALIZATIONS - DISCRIMINANT —4

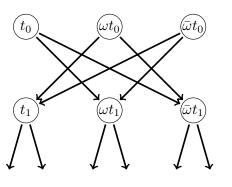


- ▶ t-invariants over $j=12^3$ fall in two orbits of points, $\{2, 2\omega, 2\omega^2\}$ of multiplicity 2, and $\{-4, -4\omega, -4\omega^2\}$ of multiplicity 1.
- ► These points at the surface are linked by a 2-isogeny and to 2-depth 1, to t = 8.
- $\Psi_2(\omega x, \omega^2 y) = \omega \Psi_2(x,y)$: the choice of representative in the orbit gives rise to one of three distinct components of the 2-isogeny graph.

Initialization: $(t_0,t_1,t_2,\dots)=(2,8,8c,\dots)$ where c is a root of x^2-8x-2 . Extension: random selection of a root t_{i+1} of $\Psi_2(t_i,x)$.

The full 2-isogeny graph has ascending edges from the depth one to $t_0=2$ If an isogeny is descending its only extension to a 2-isogeny chain is descending

WEBER INITIALIZATIONS - DISCRIMINANT —3



- $\begin{tabular}{l} $ \{t_0,t_0\omega,t_0\omega^2\}$ are t-values over \\ $j=0$, each of multiplicity 3 \end{tabular}$
- $\begin{array}{l} \blacktriangleright \ t_1 = -t_0^2 \text{, and} \\ \Psi_2(t_0, t_1 \omega) = \Psi_2(t_0, t_1 \omega^2) = 0, \end{array}$

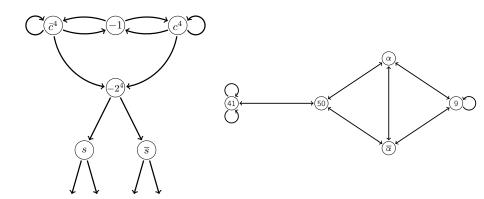
Since 2 is inert, every path from t_0 is descending, so we may initialize the 2-isogeny chain with $(t_0,t_1\omega)$.

descending isogenies.

Any descending isogenies must rejoin this graph of descending isogenies from the surface.

There are additional t-invariants at each depth > 0 which admit ascending and

WEBER INITIALIZATIONS - COVERING GRAPHS



THANK YOU FOR YOUR ATTENTION