## ORIENTING SUPERSINGULAR ISOGENY GRAPHS

## LEONAROOCOLO \& DAVIDKOHEL

Institut de Mathématiques de Marseille

Number-Theoretic Methods in Cryptology 2019 Sorbonne Université, Institut de Mathématiques de Jussieu

Paris, 26 June 2019

## ISOGENY GRAPHS

## Definition

Given an elliptic curve $E$ over $k$, and a finite set of primes $S$, we can associate an isogeny graph $\Gamma=(E, S)$

- whose vertices are elliptic curves isogenous to E over $\bar{k}$, and
- whose edges are isogenies of degree $\ell \in S$.

The vertices are defined up to $\bar{k}$-isomorphism (therefore represented by $j$-invariants), and the edges from a given vertex are defined up to a $k$-isomorphism of the codomain.

If $S=\{\ell\}$, then we call $\Gamma$ an $\ell$-isogeny graph.
For an elliptic curve $E / k$ and prime $\ell \neq \operatorname{char}(k)$, the full $\ell$-torsion subgroup is a 2-dimensional $\mathbb{F}_{\ell}$-vector space. Consequently, the set of cyclic subgroups is in bijection with $\mathbb{P}^{1}\left(\mathbb{F}_{\ell}\right)$, which in turn are in bijection with the set of $\ell$-isogenies from $E$.

Thus the $\ell$-isogeny graph of $E$ is $(\ell+1)$-regular (as a directed multigraph). In characteristic 0 , if $\operatorname{End}(E)=\mathbb{Z}$, then this graph is a tree.

## ORDINARY ISOGENY GRAPHS: VOLCANOES

Let $\operatorname{End}(E)=\mathcal{O} \subseteq K$. The class group $\mathrm{Cl}(\mathcal{O})$ (finite abelian group) acts faithfully and transitively on the set of elliptic curves with endomorphism ring $\mathcal{O}$ :

$$
E \longrightarrow E / E[\mathfrak{a}] \quad E[\mathfrak{a}]=\{P \in E \mid \alpha(P)=0 \forall \alpha \in \mathfrak{a}\}
$$

Thus, the CM isogeny graphs can be modelled by an equivalent category of fractional ideals of $K$.

$\operatorname{End}(E)$


## SUPERSIINGULAR ISOGENY GRAPHS

The supersingular isogeny graphs are remarkable because the vertex sets are finite : there are $[p / 12]+\epsilon_{p}$ curves. Moreover

- every supersingular elliptic curve can be defined over $\mathbb{F}_{p^{2}}$;
- all $\ell$-isogenies are defined over $\mathbb{F}_{p^{2}}$;
- every endomorphism of $E$ is defined over $\mathbb{F}_{p^{2}}$.

The lack of a commutative group acting on the set of supersingular elliptic curves $/ \mathbb{F}_{p^{2}}$ makes the isogeny graph more complicated.

For this reason, supersingular isogeny graphs have been proposed for

- cryptographic hash functions (Goren-Lauter),
- post-quantum SIDH key exchange protocol.



## MOTVATING OSIDH

A new key exchange protocol, CSIDH, analogous to SIDH, uses only $\mathbb{F}_{p}$-rational elliptic curves (up to $\mathbb{F}_{p}$-isomorphism), and $\mathbb{F}_{p}$-rational isogenies.
The constraint to $\mathbb{F}_{p}$-rational isogenies can be interpreted as an orientation of the supersingular graph by the subring $\mathbb{Z}[\pi]$ of $\operatorname{End}(E)$ generated by the Frobenius endomorphism $\pi$.

We introduce a general notion of orienting supersingular elliptic curves.

## Motivation

- Generalize CSIDH.
- Key space of SIDH: in order to have the two key spaces of similar size, we need to take $\ell_{A}^{e_{A}} \approx \ell_{B}^{e_{B}} \approx \sqrt{p}$. This implies that the space of choices for the secret key is limited to a fraction of the whole set of supersingular $j$-invariants over $\mathbb{F}_{p^{2}}$.
- A feature shared by SIDH and CSIDH is that the isogenies are constructed as quotients of rational torsion subgroups. The need for rational points limits the choice of the prime $p$


## ORIENTATIONS

Let $\mathcal{O}$ be an order in an imaginary quadratic field. An $\mathcal{O}$-orientation on a supersingular elliptic curve $E$ is an inclusion $\iota: \mathcal{O} \hookrightarrow \operatorname{End}(E)$, and a $K$-orientation is an inclusion $\iota: K \hookrightarrow \operatorname{End}^{0}(E)=\operatorname{End}(E) \otimes_{\mathbb{Z}} \mathbb{Q}$. An $\mathcal{O}$-orientation is primitive if $\mathcal{O} \simeq \operatorname{End}(E) \cap \iota(K)$.

## Theorem

The category of $K$-oriented supersingular elliptic curves $(E, \iota)$, whose morphisms are isogenies commuting with the $K$-orientations, is equivalent to the category of elliptic curves with CM by $K$.

Let $\phi: E \rightarrow F$ be an isogeny of degree $\ell$. A $K$-orientation $\iota: K \hookrightarrow \operatorname{End}^{0}(E)$ determines a $K$-orientation $\phi_{*}(\iota): K \hookrightarrow \operatorname{End}^{0}(F)$ on $F$, defined by

$$
\phi_{*}(\iota)(\alpha)=\frac{1}{\ell} \phi \circ \iota(\alpha) \circ \hat{\phi}
$$

## CLASS GROUP ACTION

- $\operatorname{SS}(p)=$ \{supersingular elliptic curves over $\overline{\mathbb{F}}_{p}$ up to isomorphism $\}$.
- $\mathrm{SS}_{\mathcal{O}}(p)=\left\{\mathcal{O}\right.$-oriented s.s. elliptic curves over $\overline{\mathbb{F}}_{p}$ up to $K$-isomorphism $\}$.
- $\mathrm{SS}_{\mathcal{O}}^{p r}(p)=$ subset of primitive $\mathcal{O}$-oriented curves.

The set $\mathrm{SS}_{\mathcal{O}}(p)$ admits a transitive group action:

$$
\mathcal{C \ell}(\mathcal{O}) \times \mathrm{SS}_{\mathcal{O}}(p) \longrightarrow \mathrm{SS}_{\mathcal{O}}(p) \quad([\mathfrak{a}], E) \longmapsto[\mathfrak{a}] \cdot E=E / E[\mathfrak{a}]
$$

## Proposition

The class group $\mathcal{C}(\mathcal{O})$ acts faithfully and transitively on the set of $\mathcal{O}$ isomorphism classes of primitive $\mathcal{O}$-oriented elliptic curves.

In particular, for fixed primitive $\mathcal{O}$-oriented $E$, we obtain a bijection of sets:

$$
\mathcal{C \ell}(\mathcal{O}) \longrightarrow \mathrm{SS}_{\mathcal{O}}^{p r}(p) \quad[\mathfrak{a}] \longmapsto[\mathfrak{a}] \cdot E
$$

## VORTEX

We define a vortex to be the $\ell$-isogeny subgraph whose vertices are isomorphism classes of $\mathcal{O}$-oriented elliptic curves with $\ell$-maximal endomorphism ring, equipped with an action of $\mathcal{C \ell}(\mathcal{O})$.


Instead of considering the union of different isogeny graphs, we focus on one single crater and we think of all the other primes as acting on it: the resulting object is a single isogeny circle rotating under the action of $\mathcal{C}(\mathcal{O})$.

## WHIRLPOOL

The action of $\mathcal{C}(\mathcal{O})$ extends to the union $\bigcup_{i} S S_{\mathcal{O}_{i}}(p)$ over all superorders $\mathcal{O}_{i}$ containing $\mathcal{O}$ via the surjections $\mathcal{C \ell}(\mathcal{O}) \rightarrow \mathcal{C} \ell\left(\mathcal{O}_{i}\right)$.

We define a whirlpool to be a complete isogeny volcano acted on by the class group. We would like to think at isogeny graphs as moving objects.


## WHRLPOOL

Actually, we would like to take the $\ell$-isogeny graph on the full $\mathcal{C}\left(\mathcal{O}_{K}\right)$-orbit. This might be composed of several $\ell$-isogeny orbits (craters), although the class group is transitive.


## ISOGENY CHAINS

## Definition

An $\ell$-isogeny chain of length $n$ from $E_{0}$ to $E$ is a sequence of isogenies of degree $\ell$ :

$$
E_{0} \xrightarrow{\phi_{0}} E_{1} \xrightarrow{\phi_{1}} E_{2} \xrightarrow{\phi_{2}} \ldots \xrightarrow{\phi_{n-1}} E_{n}=E .
$$

The $\ell$-isogeny chain is without backtracking if $\operatorname{ker}\left(\phi_{i+1} \circ \phi_{i}\right) \neq E_{i}[\ell], \forall i$. The isogeny chain is descending (or ascending, or horizontal) if each $\phi_{i}$ is descending (or ascending, or horizontal, respectively).

Suppose that $\left(E_{i}, \phi_{i}\right)$ is a descending $\ell$-isogeny chain with

$$
\mathcal{O}_{K} \subseteq \operatorname{End}\left(E_{0}\right), \ldots, \mathcal{O}_{n}=\mathbb{Z}+\ell^{n} \mathcal{O}_{K} \subseteq \operatorname{End}\left(E_{n}\right)
$$

If $\mathfrak{q}$ is a split prime in $\mathcal{O}_{K}$ over $q \neq \ell, p$, and then the isogeny $\psi_{0}: E_{0} \rightarrow F_{0}=E_{0} / E_{0}[\mathfrak{q}]$, can be extended to the $\ell$-isogeny chain by pushing forward the cyclic group $C_{0}=E_{0}[\mathfrak{q}]$ :

$$
C_{0}=E_{0}[\mathfrak{q}], C_{1}=\phi_{0}\left(C_{0}\right), \ldots, C_{n}=\phi_{n-1}\left(C_{n-1}\right)
$$

and defining $F_{i}=E_{i} / C_{i}$.

## LADDERS

## Definition

An $\ell$-ladder of length $n$ and degree $q$ is a commutative diagram of $\ell$-isogeny chains $\left(E_{i}, \phi_{i}\right),\left(F_{i}, \phi_{i}^{\prime}\right)$ of length $n$ connected by $q$-isogenies $\psi_{i}: E_{i} \rightarrow F_{i}$


We also refer to an $\ell$-ladder of degree $q$ as a $q$-isogeny of $\ell$-isogeny chains.
We say that an $\ell$-ladder is ascending (or descending, or horizontal) if the $\ell$-isogeny chain $\left(E_{i}, \phi_{i}\right)$ is ascending (or descending, or horizontal, respectively). We say that the $\ell$-ladder is level if $\psi_{0}$ is a horizontal $q$-isogeny. If the $\ell$-ladder is descending (or ascending), then we refer to the length of the ladder as its depth (or, respectively, as its height).

## EFFECTVE ENDOMORPHISM RINGS AND ISOGENIES

We say that a subring of $\operatorname{End}(E)$ is effective if we have explicit polynomials or rational functions which represent its generators.

Examples. $\mathbb{Z}$ in $\operatorname{End}(E)$ is effective. Effective imaginary quadratic subrings $\mathcal{O} \subset \operatorname{End}(E)$, are the subrings $\mathcal{O}=\mathbb{Z}[\pi]$ generated by Frobenius In the Couveignes-Rostovtsev-Stolbunov constructions, or in the CSIDH protocol, one works with $\mathcal{O}=\mathbb{Z}[\pi]$.

- For large finite fields, the class group of $\mathcal{O}$ is large and the primes $\mathfrak{q}$ in $\mathcal{O}$ have no small generators.
Factoring the division polynomial $\psi_{q}(x)$ to find the kernel polynomial of degree $(q-1) / 2$ for $E[\mathfrak{q}]$ becomes relatively expensive.
- In SIDH, the ordinary protocol of De Feo, Smith, and Kieffer, or CSIDH, the curves are chosen such that the points of $E[\mathfrak{q}]$ are defined over a small degree extension $\kappa / k$, and working with rational points in $E(\kappa)$.
- We propose the use of an effective CM order $\mathcal{O}_{K}$ of class number 1. The kernel polynomial can be computed directly without need for a splitting field for $E[\mathfrak{q}]$, and the computation of a generator isogeny is a one-time precomputation.


## MODULAR APPROACH

The use of modular curves for efficient computation of isogenies has an established history (see Elkies)

## Modular Curve

The modular curve $\mathrm{X}(1) \simeq \mathbb{P}^{1}$ classifies elliptic curves up to isomorphism, and the function $j$ generates its function field.

The modular polynomial $\Phi_{m}(X, Y)$ defines a correspondence in $\mathrm{X}(1) \times \mathrm{X}(1)$ such that $\Phi_{m}\left(j(E), j\left(E^{\prime}\right)\right)=0$ if and only if there exists a cyclic $m$-isogeny $\phi$ from $E$ to $E^{\prime}$, possibly over some extension field.

## Definition

A modular $\ell$-isogeny chain of length $n$ over $k$ is a finite sequence $\left(j_{0}, j_{1}, \ldots, j_{n}\right)$ in $k$ such that $\Phi_{\ell}\left(j_{i}, j_{i+1}\right)=0$ for $0 \leq i<n$.
A modular $\ell$-ladder of length $n$ and degree $q$ over $k$ is a pair of modular $\ell$-isogeny chains

$$
\left(j_{0}, j_{1}, \ldots, j_{n}\right) \text { and }\left(j_{0}^{\prime}, j_{1}^{\prime}, \ldots, j_{n}^{\prime}\right),
$$

such that $\Phi_{q}\left(j_{i}, j_{i}^{\prime}\right)=0$.

## OSIDH - nirpoouction

We consider an elliptic curve $E_{0}$ with an effective endomorphism ring (eg. $\left.j_{0}=0,1728\right)$ and a chain of $\ell$-isogenies.


## OSIDH - Introouctoon

We consider an elliptic curve $E_{0}$ with an effective endomorphism ring (eg. $\left.j_{0}=0,1728\right)$ and a chain of $\ell$-isogenies.

- For $\ell=2$ (or 3 ) a suitable candidate for $\mathcal{O}_{K}$ could be the Gaussian integers $\mathbb{Z}[i]$ or the Eisenstein integers $\mathbb{Z}[\omega]$.



## OSIDH - nirpoouction

We consider an elliptic curve $E_{0}$ with an effective endomorphism ring (eg. $\left.j_{0}=0,1728\right)$ and a chain of $\ell$-isogenies.

- Horizontal isogenies must be endomorphisms




## OSIDH - nirpoouction

We consider an elliptic curve $E_{0}$ with an effective endomorphism ring (eg. $\left.j_{0}=0,1728\right)$ and a chain of $\ell$-isogenies.

- We push forward our $q$-orientation obtaining $F_{1}$.




## OSIDH - nirpoouctoon

We consider an elliptic curve $E_{0}$ with an effective endomorphism ring (eg. $\left.j_{0}=0,1728\right)$ and a chain of $\ell$-isogenies.

- We repeat the process for $F_{2}$.



## OSIDH - nirpoouction

We consider an elliptic curve $E_{0}$ with an effective endomorphism ring (eg. $\left.j_{0}=0,1728\right)$ and a chain of $\ell$-isogenies.

- And again till $F_{n}$.



## HOW FAR SHOULD WE GO?

In order to have the action of $\mathcal{C \ell}(\mathcal{O})$ cover a large portion of the supersingular elliptic curves, we require $\ell^{n} \sim p$, i.e., $n \sim \log _{\ell}(p)$.

- $\# S S_{\mathcal{O}}^{p r}(p)=h\left(\mathcal{O}_{n}\right)=$ class number of $\mathcal{O}_{n}=\mathbb{Z}+\ell^{n} \mathcal{O}_{K}$.
- Class Number Formula

$$
h\left(\mathbb{Z}+m \mathcal{O}_{K}\right)=\frac{h\left(\mathcal{O}_{K}\right) m}{\left[\mathcal{O}_{K}^{\times}: \mathcal{O}^{\times}\right]} \prod_{p \mid m}\left(1-\left(\frac{\Delta_{K}}{p}\right) \frac{1}{p}\right)
$$

- Units

$$
\mathcal{O}_{K}^{\times}=\left\{\begin{array}{ll}
\{ \pm 1\} & \text { if } \Delta_{K}<-4 \\
\{ \pm 1, \pm i\} & \text { if } \Delta_{K}=-4 \\
\left\{ \pm 1, \pm \omega, \pm \omega^{2}\right\} & \text { if } \Delta_{K}=-3
\end{array} \Rightarrow\left[\mathcal{O}_{K}^{\times}: \mathcal{O}^{\times}\right]= \begin{cases}1 & \text { if } \Delta_{K}<-4 \\
2 & \text { if } \Delta_{K}=-4 \\
3 & \text { if } \Delta_{K}=-3\end{cases}\right.
$$

- Number of Supersingular curves

$$
\# \mathrm{SS}(p)=\left[\frac{p}{12}\right]+\epsilon_{p} \quad \epsilon_{p} \in\{0,1,2\}
$$

Therefore, $h\left(\ell^{n} \mathcal{O}_{K}\right)=\frac{1 \cdot \ell^{n}}{2 \text { or } 3}\left(1-\left(\frac{\Delta_{K}}{\ell}\right) \frac{1}{\ell}\right)=\left[\frac{p}{12}\right]+\epsilon_{p} \Longrightarrow p \sim \ell^{n}$

## OSIDH - Intooouction \& modular approch

If we look at modular polynomials $\Phi_{\ell}(X, Y)$ and $\Phi_{q}(X, Y)$ we realize that all we need are the $j$-invariants:


## OSIDH - INTRoduction \& modular approach

If we look at modular polynomials $\Phi_{\ell}(X, Y)$ and $\Phi_{q}(X, Y)$ we realize that all we need are the $j$-invariants:


Since $j_{2}$ is given (the initial chain is known) and supposing that $j_{1}^{\prime}$ has already been constructed, $j_{2}^{\prime}$ is determined by a system of two equations

## HOW MANY STEPS BEFORE TLE IDEALS ACT DIFFERENTLV?


$E_{i}^{\prime} \neq E_{i}^{\prime \prime}$ if and only if $\mathfrak{q}^{2} \cap \mathcal{O}_{i}$ is not principal and the probability that a random ideal in $\mathcal{O}_{i}$ is principal is $1 / h\left(\mathcal{O}_{i}\right)$. In fact, we can do better; we write $\mathcal{O}_{K}=\mathbb{Z}[\omega]$ and we observe that if $\mathfrak{q}^{2}$ was principal, then

$$
q^{2}=\mathrm{N}\left(\mathfrak{q}^{2}\right)=\mathrm{N}\left(a+b \ell^{i} \omega\right)
$$

since it would be generated by an element of $\mathcal{O}_{i}=\mathbb{Z}+\ell^{i} \mathcal{O}_{K}$. Now

$$
\mathrm{N}\left(a+b \ell^{i}\right)=a^{2} \pm a b t \ell^{i}+b^{2} s \ell^{2 i} \quad \text { where } \quad \omega^{2}+t \omega+s=0
$$

Thus, as soon as $\ell^{2 i} \gg q^{2}$, we are guaranteed that $\mathfrak{q}^{2}$ is not principal.

## A FIRST NAIVE PROTOCOL

PUBLIC DATA: A chain of $\ell$-isogenies $E_{0} \rightarrow E_{1} \rightarrow \ldots \rightarrow E_{n}$ ALICE

## BOB

## A FIRST NAIVE PROTOCOL

PUBLIC DATA: A chain of $\ell$-isogenies $E_{0} \rightarrow E_{1} \rightarrow \ldots \rightarrow E_{n}$ ALICE


## A FIRST NAIVE PROTOCOL

PUBLIC DATA: A chain of $\ell$-isogenies $E_{0} \rightarrow E_{1} \rightarrow \ldots \rightarrow E_{n}$ ALICE

Choose a primitive $\mathcal{O}_{K}$-orientation of $E_{0}$


## BOB



Push it forward to depth $n$

$$
\underbrace{E_{0}=F_{0} \rightarrow F_{1} \rightarrow \ldots \rightarrow F_{n}}_{\phi_{A}} \underbrace{E_{0}=G_{0} \rightarrow G_{1} \rightarrow \ldots \rightarrow G_{n}}_{\phi_{B}}
$$

## A FIRST NAIVE PROTOCOL

PUBLIC DATA: A chain of $\ell$-isogenies $E_{0} \rightarrow E_{1} \rightarrow \ldots \rightarrow E_{n}$
ALICE
Choose a primitive $\mathcal{O}_{K}$-orientation of $E_{0}$


## BOB



Push it forward to depth $n$

Exchange data

$$
\begin{gathered}
\underbrace{E_{0}=F_{0} \rightarrow F_{1} \rightarrow \ldots \rightarrow F_{n}}_{\phi_{A}} \underbrace{E_{0}=G_{0} \rightarrow G_{1} \rightarrow \ldots \rightarrow G_{n}}_{\left\{\phi_{B}\right.} \\
\left\{F_{i}\right\}_{i=1}^{n}
\end{gathered}
$$

## A FIRST NAIVE PROTOCOL

PUBLIC DATA: A chain of $\ell$-isogenies $E_{0} \rightarrow E_{1} \rightarrow \ldots \rightarrow E_{n}$

## ALICE

Choose a primitive $\mathcal{O}_{K}$-orientation of $E_{0}$


## BOB



Push it forward to depth $n$

Exchange data
Compute shared secret

$$
\begin{gathered}
\underbrace{E_{0}=F_{0} \rightarrow F_{1} \rightarrow \ldots \rightarrow F_{n}}_{\phi_{A}} \underbrace{E_{0}=G_{0} \rightarrow G_{1} \rightarrow \ldots \rightarrow G_{n}}_{\left\{G_{B}\right.} \\
\left\{F_{i}\right\}_{i=1}^{n}
\end{gathered}
$$

Compute $\phi_{A} \cdot\left\{G_{i}\right\} \quad$ Compute $\phi_{B} \cdot\left\{F_{i}\right\}$

## A EIRST NAIVE PROTOCOL

PUBLIC DATA: A chain of $\ell$-isogenies $E_{0} \rightarrow E_{1} \rightarrow \ldots \rightarrow E_{n}$

## ALICE

## BOB

Choose a primitive $\mathcal{O}_{K}$-orientation of $E_{0}$


Push it forward to depth $n$

Exchange data
Compute shared secret

$$
\begin{aligned}
\underbrace{E_{0}=F_{0} \rightarrow F_{1} \rightarrow \ldots \rightarrow F_{n}}_{\phi_{A}} \underbrace{E_{0}=G_{0} \rightarrow G_{1} \rightarrow \ldots \rightarrow G_{n}}_{\left\{G_{B}\right.} \\
\left\{F_{i}\right\}_{i=1}^{n}
\end{aligned}
$$

Compute $\phi_{A} \cdot\left\{G_{i}\right\} \quad$ Compute $\phi_{B} \cdot\left\{F_{i}\right\}$
In the end, Alice and Bob will share a new chain $E_{0} \rightarrow H_{1} \rightarrow \ldots \rightarrow H_{n}$

## GRAPHIC REPRESENTATION



## A FIRST NAIVE PROTOCOL - weakness

In reality, sharing $\left(F_{i}\right)$ and $\left(G_{i}\right)$ reveals too much of the private data.
From the short exact sequence of class groups:

$$
1 \rightarrow \frac{\left(\mathcal{O}_{K} / \ell^{n} \mathcal{O}_{K}\right)^{\times}}{\mathcal{O}_{K}^{\times}\left(\mathbb{Z} / \ell^{n} \mathbb{Z}\right)^{\times}} \rightarrow \mathcal{C} \ell(\mathcal{O}) \rightarrow \mathcal{C} \ell\left(\mathcal{O}_{K}\right) \rightarrow 1
$$

an adversary can compute successive approximations $\left(\bmod \ell^{i}\right)$ to $\phi_{A}$ and $\phi_{B}$ modulo $\ell^{n}$ hence in $\mathcal{C} \ell(\mathcal{O})$.


## OSIDH PROTOCOL

PUBLIC DATA: A chain of $\ell$-isogenies $E_{0} \rightarrow E_{1} \rightarrow \ldots \rightarrow E_{n}$ and a set of splitting primes $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{t} \subseteq \mathcal{O}_{n} \subseteq \operatorname{End}\left(E_{n}\right) \cap K \subseteq \mathcal{O}_{K}$ ALICE BOB

## OSIDH PROTOCOL

PUBLIC DATA: A chain of $\ell$-isogenies $E_{0} \rightarrow E_{1} \rightarrow \ldots \rightarrow E_{n}$ and a set of splitting primes $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{t} \subseteq \mathcal{O}_{n} \subseteq \operatorname{End}\left(E_{n}\right) \cap K \subseteq \mathcal{O}_{K}$

ALICE

BOB
Choose integers in a bound $[-r, r]$

$$
\left(e_{1}, \ldots, e_{t}\right)
$$

$$
\left(d_{1}, \ldots, d_{t}\right)
$$

## OSIDH PROTOCOL

PUBLIC DATA: A chain of $\ell$-isogenies $E_{0} \rightarrow E_{1} \rightarrow \ldots \rightarrow E_{n}$ and a set of splitting primes $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{t} \subseteq \mathcal{O}_{n} \subseteq \operatorname{End}\left(E_{n}\right) \cap K \subseteq \mathcal{O}_{K}$

## ALICE

Choose integers in a bound $[-r, r]$ Construct an isogenous curve

$$
\left(d_{1}, \ldots, d_{t}\right)
$$

$$
F_{n}=E_{n} / E_{n}\left[\mathfrak{p}_{1}^{e_{1}} \cdots \mathfrak{p}_{t}^{e_{t}}\right] \quad G_{n}=E_{n} / E_{n}\left[\mathfrak{p}_{1}^{d_{1}} \cdots \mathfrak{p}_{t}^{d_{t}}\right]
$$

## OSIDH PROTOCOL

PUBLIC DATA: A chain of $\ell$-isogenies $E_{0} \rightarrow E_{1} \rightarrow \ldots \rightarrow E_{n}$ and a set of splitting primes $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{t} \subseteq \mathcal{O}_{n} \subseteq \operatorname{End}\left(E_{n}\right) \cap K \subseteq \mathcal{O}_{K}$

## ALICE

Choose integers in a bound $[-r, r]$ Construct an isogenous curve Precompute all directions $\forall i$

$$
\left(e_{1}, \ldots, e_{t}\right)
$$

$$
\left(d_{1}, \ldots, d_{t}\right)
$$

$$
\begin{array}{ll}
F_{n}=E_{n} / E_{n}\left[\mathfrak{p}_{1}^{e_{1}} \cdots \mathfrak{p}_{t}^{e_{t}}\right] & G_{n}=E_{n} / E_{n}\left[\mathfrak{p}_{1}^{d_{1}} \cdots \mathfrak{p}_{t}^{d_{t}}\right] \\
F_{n, i}^{(-r)} \leftarrow F_{n, i}^{(-r+1)} \leftarrow \ldots \leftarrow F_{n, i}^{(1)} \leftarrow F_{n} & G_{n, i}^{(-r)} \leftarrow G_{n, i}^{(-r+1)} \leftarrow \ldots \leftarrow G_{n, i}^{(1)} \leftarrow G_{n}
\end{array}
$$

## OSIDH PROTOCOL

PUBLIC DATA: A chain of $\ell$-isogenies $E_{0} \rightarrow E_{1} \rightarrow \ldots \rightarrow E_{n}$ and a set of splitting primes $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{t} \subseteq \mathcal{O}_{n} \subseteq \operatorname{End}\left(E_{n}\right) \cap K \subseteq \mathcal{O}_{K}$

## ALICE

Choose integers in a bound $[-r, r]$ Construct an isogenous curve Precompute all directions $\forall i$
... and their conjugates

$$
\left(e_{1}, \ldots, e_{t}\right)
$$

$$
\left(d_{1}, \ldots, d_{t}\right)
$$

$$
\begin{array}{ll}
F_{n}=E_{n} / E_{n}\left[\mathfrak{p}_{1}^{e_{1}} \cdots \mathfrak{p}_{t}^{e_{t}}\right] & G_{n}=E_{n} / E_{n}\left[\mathfrak{p}_{1}^{d_{1}} \cdots \mathfrak{p}_{t}^{d_{t}}\right] \\
F_{n, i}^{(-r)} \leftarrow F_{n, i}^{(-r+1)} \leftarrow \ldots \leftarrow F_{n, i}^{(1)} \leftarrow F_{n} & G_{n, i}^{(-r)} \leftarrow G_{n, i}^{(-r+1)} \leftarrow \ldots \leftarrow G_{n, i}^{(1)} \leftarrow G_{n} \\
F_{n} \rightarrow F_{n, i}^{(1)} \rightarrow \ldots \rightarrow F_{n, i}^{(r-1)} \rightarrow F_{n, 1}^{(r)} & G_{n} \rightarrow G_{n, i}^{(1)} \rightarrow \ldots \rightarrow G_{n, i}^{(r-1)} \rightarrow G_{n, 1}^{(r)}
\end{array}
$$

## OSIDH PROTOCOL

PUBLIC DATA: A chain of $\ell$-isogenies $E_{0} \rightarrow E_{1} \rightarrow \ldots \rightarrow E_{n}$ and a set of splitting primes $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{t} \subseteq \mathcal{O}_{n} \subseteq \operatorname{End}\left(E_{n}\right) \cap K \subseteq \mathcal{O}_{K}$

## ALICE

Choose integers in a bound $[-r, r]$ Construct an isogenous curve Precompute all directions $\forall i$
... and their conjugates
Exchange data

$$
F_{n}=E_{n} / E_{n}\left[\mathfrak{p}_{1}^{e_{1}} \cdots \mathfrak{p}_{t}^{e_{t}}\right] \quad G_{n}=E_{n} / E_{n}\left[\mathfrak{p}_{1}^{d_{1}} \cdots \mathfrak{p}_{t}^{d_{t}}\right]
$$

$$
F_{n, i}^{(-r)} \leftarrow F_{n, i}^{(-r+1)} \leftarrow \ldots \leftarrow F_{n, i}^{(1)} \leftarrow F_{n} \quad G_{n, i}^{(-r)} \leftarrow G_{n, i}^{(-r+1)} \leftarrow \ldots \leftarrow G_{n, i}^{(1)} \leftarrow G_{n}
$$

$$
\begin{gathered}
F_{n} \rightarrow F_{n, i}^{(1)} \rightarrow \ldots \rightarrow F_{n, i}^{(r-1)} \rightarrow F_{n, 1}^{(r)} \quad G_{n} \rightarrow G_{n, i}^{(1)} \rightarrow \ldots \rightarrow G_{n, i}^{(r-1)} \rightarrow G_{n, 1}^{(r)} \\
G_{n}+\text { directions }
\end{gathered} F_{n}+\text { directions }
$$

## OSIDH PROTOCOL

PUBLIC DATA: A chain of $\ell$-isogenies $E_{0} \rightarrow E_{1} \rightarrow \ldots \rightarrow E_{n}$ and a set of splitting primes $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{t} \subseteq \mathcal{O}_{n} \subseteq \operatorname{End}\left(E_{n}\right) \cap K \subseteq \mathcal{O}_{K}$

## ALICE

Choose integers in a bound $[-r, r]$ Construct an isogenous curve Precompute all directions $\forall i$
... and their conjugates Exchange data

Compute shared data

$$
\begin{array}{cc}
\left(e_{1}, \ldots, e_{t}\right) & \left(d_{1}, \ldots, d_{t}\right) \\
F_{n}=E_{n} / E_{n}\left[\mathfrak{p}_{1}^{e_{1}} \cdots \mathfrak{p}_{t}^{e_{t}}\right]
\end{array} G_{n}=E_{n} / E_{n}\left[\mathfrak{p}_{1}^{d_{1}} \ldots \mathfrak{p}_{t}^{d_{t}}\right]
$$

## BOB

## OSIDH PROTOCOL

PUBLIC DATA: A chain of $\ell$-isogenies $E_{0} \rightarrow E_{1} \rightarrow \ldots \rightarrow E_{n}$ and a set of splitting primes $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{t} \subseteq \mathcal{O}_{n} \subseteq \operatorname{End}\left(E_{n}\right) \cap K \subseteq \mathcal{O}_{K}$

## ALICE

Choose integers in a bound $[-r, r]$ Construct an isogenous curve Precompute all directions $\forall i$
... and their conjugates Exchange data

Compute shared data

$$
\begin{array}{ll}
F_{n}=E_{n} / E_{n}\left[\mathfrak{p}_{1}^{e_{1}} \cdots \mathfrak{p}_{t}^{e_{t}}\right] & G_{n}=E_{n} / E_{n}\left[\mathfrak{p}_{1}^{d_{1}} \cdots \mathfrak{p}_{t}^{d_{t}}\right] \\
F_{n, i}^{(-r)} \leftarrow F_{n, i}^{(-r+1)} \leftarrow \ldots \leftarrow F_{n, i}^{(1)} \leftarrow F_{n} & G_{n, i}^{(-r)} \leftarrow G_{n, i}^{(-r+1)} \leftarrow \ldots \leftarrow G_{n, i}^{(1)} \leftarrow G_{n}
\end{array}
$$

$$
F_{n} \rightarrow F_{n, i}^{(1)} \rightarrow \ldots \rightarrow F_{n, i}^{(r-1)} \rightarrow F_{n, 1}^{(r)} \quad G_{n} \rightarrow G_{n, i}^{(1)} \rightarrow \ldots \rightarrow G_{n, i}^{(r-1)} \rightarrow G_{n, 1}^{(r)}
$$

Takes $e_{i}$ steps in $\mathfrak{p}_{i}$-isogeny chain \& push forward information for

$$
j>i .
$$

Takes $d_{i}$ steps in $\mathfrak{p}_{i}$-isogeny chain \& push forward information for In the end, they share $H_{n}=E_{n} / E_{n}\left[\mathfrak{p}_{1}^{e_{1}+d_{1}} \cdot \ldots \cdot \mathfrak{p}_{t}^{e_{t}+d_{t}}\right]$

## OSIDH PROTOCOL - graphlc reppesentation I

The first step consists of choosing the secret keys; these are represented by a sequence of integers $\left(e_{1}, \ldots, e_{t}\right)$ such that $\left|e_{i}\right| \leq r$. The bound $r$ is taken so that the number $(2 r+1)^{t}$ of curves that can be reached is sufficiently large. This choice of integers enables Alice to compute a new elliptic curve

$$
F_{n}=\frac{E_{n}}{E_{n}\left[\mathfrak{p}_{1}^{e_{1}} \cdots \mathfrak{p}_{t}^{e_{t}}\right]}
$$

by means of constructing the following commutative diagram


## OSIDH PROTOCOL - gRaphl Representation II

Once that Alice obtain from Bob the curve $G_{n}$ together with the collection of data encoding the directions, she takes $e_{1}$ steps in the $\mathfrak{p}_{1}$-isogeny chain and push forward all the $\mathfrak{p}_{i}$-isogeny chains for $i>1$.


## HARD PROBLEMS

## Endomorphism ring problem

Given a supersingular elliptic curve $E / \mathbb{F}_{p^{2}}$ and $\pi=[p]$, determine $\operatorname{End}(E)$ as an abstract ring or an explicit basis for it over $\mathbb{Z}$ (or for $\operatorname{End}^{0}(E)$ over $\mathbb{Q}$ ).

## Endomorphism Generators Problem

Given a supersingular elliptic curve $E / \mathbb{F}_{p^{2}}, \pi=[p]$, an imaginary quadratic order $\mathcal{O}$ admitting an embedding in $\operatorname{End}(E)$ and a collection of compatible $\left(\mathcal{O}, \mathfrak{q}^{n}\right)$-orientations of $E$ for $(\mathfrak{q}, n) \in S$, determine

1. An explicit endomorphism $\phi \in \mathcal{O} \subseteq \operatorname{End}(E)$
2. A generator $\phi$ of $\mathcal{O} \subseteq \operatorname{End}(E)$

Suppose $S=\{(\mathfrak{q}, n)\}=\left\{\left(\mathfrak{q}_{1}, n_{1}\right), \ldots,\left(\mathfrak{q}_{t}, n_{t}\right)\right\}$ where $\mathfrak{q}_{1}, \ldots, \mathfrak{q}_{t}$ are pairwise distinct primes such that

$$
\begin{aligned}
{\left[0, \ldots, n_{1}\right] \times \ldots \times\left[0, \ldots, n_{t}\right] } & \longrightarrow \mathcal{C}(\mathcal{O}) \\
\left(e_{1}, \ldots, e_{t}\right) & \longrightarrow\left[\mathfrak{q}_{1}^{e_{1}} \cdot \ldots \cdot \mathfrak{q}_{t}^{e_{t}}\right]
\end{aligned}
$$

is injective. Then, the problem should remain difficult.

## SECURITY PARAMETERS - FRPST CHICE

Consider an arbitrary supersingular endomorphism ring $\mathcal{O}_{\mathfrak{B}} \subset \mathfrak{B}$ with discriminant $p^{2}$. There is a positive definite rank 3 quadratic form

$$
\begin{aligned}
\operatorname{disc}: \mathcal{O}_{\mathfrak{B}} / \mathbb{Z} & \longrightarrow \mathbb{Z} \\
\bigwedge^{2}\left(\mathcal{O}_{\mathfrak{B}}\right) \supseteq \mathbb{Z} \wedge \mathcal{O}_{\mathfrak{B}} \quad \alpha & |\operatorname{disc}(\alpha)|=|\operatorname{disc}(\mathbb{Z}[\alpha])|
\end{aligned}
$$

representing discriminants of orders embedding in $\mathcal{O}_{\mathfrak{B}}$.
The general order $\mathcal{O}_{\mathfrak{B}}$ has a reduced basis $1 \wedge \alpha_{1}, 1 \wedge \alpha_{2}, 1 \wedge \alpha_{3}$ satisfying

$$
\left|\operatorname{disc}\left(1 \wedge \alpha_{i}\right)\right|=\Delta_{i} \text { where } \Delta_{i} \sim p^{2 / 3}
$$

(Minkowski bound: $c_{1} p^{2} \leq \Delta_{1} \Delta_{2} \Delta_{3} \leq c_{2} p^{2}$ ).
In order to hide $\mathcal{O}_{n}$ in $\mathcal{O}_{\mathfrak{B}}$ we impose

$$
\ell^{2 n}\left|\Delta_{K}\right|>c p^{2 / 3} \quad \Rightarrow \quad n \sim \frac{\log _{\ell}(p)}{3}
$$

so that there is no special imaginary quadratic subring in $\mathcal{O}_{\mathfrak{B}}=\operatorname{End}\left(E_{n}\right)$.

Future work:

- Security analysis and setting security parameters.
- Implementation and algorithmic optimization.
- Use of canonical liftings.

Future work:

- Security analysis and setting security parameters.
- Implementation and algorithmic optimization.
- Use of canonical liftings.


## THANK YOU FOR YOUR ATTENTION

