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ELLIPTIC CURVES

Let k be a field of characteristic # 2, 3. An elliptic curve E defined over k is a
smooth projective curve of genus 1 defined by a Weierstrass equation

E:Y?Z=X3+aXZ?>+b73
where a, b € k are such that 4a® + 27 + 0.
In general we work with the affine equation of E, i.e., E : y?> = 23 + azx + b.
We distinguish the point O = (0 : 1 : 0) (called point at infinity).

There is a way of adding points on E based on Bezout’s theorem (we fix the
point O and we define the sum of three co-linear points to be O). This law
endows the set of k-rational points with a group structure where O plays the role
of identity element. We write E(k).
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ISOMORPHISMS OF ELLIPTIC CURVES

An isomorphism of elliptic curves is an invertible morphism of algebraic curves.
They are often referred to as admissible (linear) change of variables.

Isomorphisms N
Invertible algebraic maps between elliptic curves are of the form
(x,y) = (uPz,uPy) forsomeu € k.
Isomorphisms between elliptic curves are group isomorphisms.
Isomorphism classes are described by an invariant;
~

The j-invariant of an elliptic curve E : y? = 23 + ax + bis

4a3

JE) = 1728 o

Two elliptic curves E, E’ are isomorphic over k if and only if j(E) = j(E’).
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GROUP STRUCTURE

Let E be an elliptic curve defined over a field k£ and m an integer. The m-torsion
subgroup of E'is

E[m]|={P € E(k) |mP =0}

Torsion structure 0

Let E be an elliptic curve defined over an algebraic closed field k of charac-
teristic p. If p does not divide m or p = 0, then

7z 7z
Elml~ 17 > 57

If the p > 0, then

Z .
B~ {77 Ordinary case
{O}  Supersingular case
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We want to study relationships between isomorphisms classes of elliptic curves.

Isogenies 0

Anisogeny ¢ : E — E’ between two elliptic curves is
» Amap E — E’ such that ¢(P + Q) = ¢(P) + ¢(Q).
» A surjective group morphisms (in the algebraic closure).
» A group morphism with finite kernel.

» A non-constant algebraic map of projective varieties such that
»(Op) = Op.
» An algebraic morphism given by rational maps

bla,y) = (f1<w,y> f2<x,y>)

91(2,y) " go(,y)

N

The first example of isogeny is the multiplication by » map: [n] : E — E.
If k = I, we also have the Frobenius morphism  : (z,y) — (z7,y).
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Introduction Isogenies

ATTRIBUTES OF ISOGENIES

Let ¢ : E — E’ be an isogeny defined over a field k, char(k) = p. We define
k(E), k(E") to be the function fields of E and E’; by composing ¢ with elements
of k(E”) we obtain a subfield ¢*(k(E")) of k(E).

» The degree of ¢ is defined to be deg ¢ = [k (E) : ¢*k (E")].

» ¢ is said separable, inseparable or purely inseparable if the corresponding
extension of function fields is.

> If ¢ is separable then deg ¢ = #ker ¢ while in the purely inseparable case
ker ¢ = {O} and deg ¢ = p” some r.

» Given any isogeny ¢ : E — E’ there always exists a unique isogeny
¢ : B — E, called the dual isogeny, such that

$pod=ldeg ¢, o¢=[degg],
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Introduction Isogenies

THEOREMS ON ISOGENIES

For every finite subgroup G C E (k), there exist a unique (up to isomor-
phism) elliptic curve E’ = E/G and a unique separable isogeny E — E’ of
degree #G. Further, any separable isogeny arises in this way.

Given G, Velu's formula enables one to find explicit description for ¢.

Theorem (Tate) b

Two elliptic curves E and E’ defined over a finite field k are isogenous over
kifandonly if #E(k) = #E' (k).

Observe that there exists an algorithm (Schoof - 1985) which, using isogenies,
compute the cardinality of E in polynomial time.
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Introduction Endomorphisms

ENDOMORPHISMS

An endomorphism of an elliptic curve F is an isogeny form E to itself.
Endomorphism ring h

The endomorphism ring End(E) = End; (E) of an elliptic curve E/k is the

set of all endomorphisms of E (together with the 0-map) endowed with sum
and multplication.

The endomorphism ring always contains a copy of Z in the form of the
multiplication by m maps.

If k& is a finite field we also have the Frobenius endomorphism.

Theorem (Hasse) h

Let E be an elliptic curve defined over a finite field with ¢ elements. Its
Frobenius endomorphism satisfies a quadratic equation 72 —t7 + ¢ = 0 for
some |t| < 2,/q, called the trace of .
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Introduction Endomorphisms

THEOREMS ON ENDOMORPHISMS

Let E be an elliptic curve defined over a finite field k. End(E) has dimension
either 2 or 4 as a Z-module.

Theorem (Deuring) b

Let E/k be an elliptic curve over a finite field k of characteristic p > 0.
End(FE) is isomorphic to one of the following:

» An order @ in a quadratic imaginary field; we say that E is ordinary.

» A maximal order in a quaternion algebra; we say that E'is
supersingular.

Isogenous curves are always either both ordinary, or both supersingular.
Theorem (Serre-Tate) )

Two elliptic curves E, and E; defined over a finite field k£ are isogenous if
and only if End(E,) ®; Q ~ End(E;) ®; Q.
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ISOGENY GRAPHS

Definition )
Given an elliptic curve F over k, and a finite set of primes S, we can associate
an isogeny graph T’ = (E, S)

» whose vertices are elliptic curves isogenous to E over k, and

» whose edges are isogenies of degree ¢ € S.

The vertices are defined up to k-isomorphism (therefore represented by
J-invariants), and the edges from a given vertex are defined up to a
k-isomorphism of the codomain.

If S = {¢}, then we call T" an ¢-isogeny graph.

For an elliptic curve E/k and prime ¢ # char(k), the full £-torsion subgroup is a
2-dimensional [ ,-vector space. Consequently, the set of cyclic subgroups is in
bijection with P*(F,), which in turn are in bijection with the set of ¢-isogenies
from E.

Thus the ¢-isogeny graph of E'is (¢ + 1)-regular (as a directed multigraph). In
characteristic 0, if End(E) = Z, then this graph is a tree.
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Isogeny Graphs

ORDINARY ISOGENY GRAPHS: VOLCANOES

Let End(E) = O C K. The class group CI(0) (finite abelian group) acts faithfully
and transitively on the set of elliptic curves with endomorphism ring O:

E — E/Ela] Ela]={P€E|a(P)=0Va€a}

Thus, the CM isogeny graphs can be modelled by an equivalent category of
fractional ideals of K.

End(E)
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STRUCTURE OF VOLCANGES

Let E'and E’ be to elliptic curves with endomorphism rings @ and ¢’
respectively and let ¢ : E — E’ be an £ isogeny.

» If O = ¢ we say that ¢ is horizontal,
» If [0 : O] = £ we say that ¢ is ascending;
» If [0 : O] = ¢ we say that ¢ is descending.

)

The crater consists of h(O k) = #C(O) Elliptic curves. Depending on the
behaviour of £ in O we can have one or multiple craters:

(G)--1 (-0 () =1

N
The height of the volcano is v, ([0 : Z[x]]).
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Introduction Isogeny Graphs

SUPERSINGULAR ISOGENY GRAPHS

The supersingular isogeny graphs are remarkable because the vertex sets are
finite : there are (p + 1)/12 + ¢, curves. Moreover

» every supersingular elliptic curve can be defined over [ ,»;
> all {-isogenies are defined over [ .;
» every endomorphism of E is defined over [ ..

The lack of a commutative group acting on the set of
supersingular elliptic curves/[,. makes the isogeny
graph more complicated.

For this reason, supersingular isogeny graphs have
been proposed for

» cryptographic hash functions (Goren—-Lauter),

» post-quantum SIDH key exchange protocol.
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SIDH - L DE FEO § D. JAO, 201

Supersingular isogeny Diffie-Hel A

» Fix two small primes ¢4 and ¢;
» Choose a prime psuchthatp + 1 = fjf’gffor a small correction term f;

2
» Pick a random supersingular elliptic curve E/F . E (sz) o (ﬁ)

» Alice consider E[(%4] = (P4, Q 4) while Bob takes E [¢%] = (Pg, Qp).
» SecretData: Ry, =m, P, +n, Q4 and Rz = mpPp +ngQp.
» Private Key: isogenies ¢, : E - E, = F/E(R,) and
¢p: E — Eg=E/E(Rp).
» Shared Data: £, ¢4(Pp), 94(Qp) and E, ¢5(Pa), ¢5(Q4).
» Shared Key: E/E(R,, Rp) = Eg/{¢5(R4)) = E4/{¢4(Rp)).

N
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CSIDH - W, CASTAVCK & T. ANGE 6 C. MARTINDALE 6 L. PANNY 6 . RENES, 2018

It is an adaptation of the Couveignes—Rostovtsev—Stolbunov scheme to
supersingular elliptic curves.

Commutative Supersingular iso A

» Fixaprimep=4-¢,-...- £, — 1 for small distinct odd primes ¢;.

» The elliptic curve E; : y* = 2® + x/F, is supersingular and its
endomorphism ring restricted to [, is @ = Z [r] (commutative).

» Al Montgomery curves E, : y* = x* + Az® + z/F, that are
supersingular, appear in the ¢(0)-orbit of E,, (easy to store data).

» Private Key: it is an n-tuple of integers (e, ..., e;) sampled in a range
{—m,...,m} representing an ideal class [a] = [I* - ... - [[*] € &(O)
where [, = (¢, ™ — 1).

» Public Key: The Montgomery coefficients A of the elliptic curve
E,=la]-Ey:y? =23+ Ax® + x.

» Shared Key: [f Alice and Bob have private key (a, 4) and (b, B) then
they can compute the shared key E 45 = [a] [b] - E, = [b] [a] - E,.

N
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MOTIVATING OSIDH

The constraint to [F,-rational isogenies can be interpreted as an orientation of
the supersingular graph by the subring Z[r] of End(E) generated by the
Frobenius endomorphism 7.

We introduce a general notion of orienting supersingular elliptic curves and their
isogenies, and use this as the basis to construct a general oriented
supersingular isogeny Diffie-Hellman (OSIDH) protocole.

| Motivation A
» Generalize CSIDH.

» Key space of SIDH: in order to have the two key spaces of similar size,
we need to take (" ~ (7 ~ /p. This implies that the space of choices
for the secret key is limited to a fraction of the whole set of supersingular
J-invariants over F ..

» A feature shared by SIDH and CSIDH is that the isogenies are
constructed as quotients of rational torsion subgroups. The need for
L rational points limits the choice of the prime p
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ORIENTATIONS

Let O be an order in an imaginary quadratic field. An @-orientation on a
supersingular elliptic curve E'is an inclusion ¢ : @ < End(FE), and a
K-orientation is an inclusion « : K < End’(E) = End(E) ®, Q. An O-orientation
is primitive if O ~ End(E) N «(K).

The category of K-oriented supersingular elliptic curves (E, ¢), whose mor-
phisms are isogenies commuting with the K-orientations, is equivalent to
the category of elliptic curves with CM by K.

Let ¢ : E — Fbe an isogeny of degree ¢. A K-orientation . : K < End’(E)
determines a K-orientation ¢, (1) : K < End’(F) on F, defined by

6.()(a) = 7 6o a) 0 6.

Conversely, given K-oriented elliptic curves (E, ) and (F,¢) we say that an
isogeny ¢ : E — F'is K-oriented if ¢, (vp) = ¢y, i.€., if the orientation on F'is
induced by ¢.
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ORIENTED ELLIPTIC CURVES AND VOLCANOES

As we have seen, one feature of the ¢-isogeny graphs of CM elliptic curves is
that in each component, depending on whether ¢ is split, inert, or ramified in K,
there is a cycle of vertices, unique vertex, or adjacent pair of vertices which have
£-maximal endomorphism ring.

Chains of £-isogenies leading away from these ¢-maximal vertices have
successively (and strictly) smaller endomorphism rings, by a power of ¢.

This lets us define the depth of a CM elliptic curve E (i.e. vertex) in the £-isogeny
graph as the valuation of the index [0 : End(E)] at ¢, which measures the
distance to an ¢-maximal vertex.

Consequently, we obtain a notion of depth at ¢ in the K-oriented supersingular
£-isogeny graph.

We also recover the notion of horizontal, ascending and descending isogenies.
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CLASS GROUP ACTION

» SS(p) = {supersingular elliptic curves over [, up to isomorphism}.
» SS,(p) = {O-oriented s.s. elliptic curves over Tp up to K-isomorphism}.
» SSI(p) =subset of primitive ¥-oriented curves.

The set SS,,(p) admits a transitive group action:

C(O) x 8Sy(p) — SSp(p) ([a], B) /—— [a] - E = E/E]d]

Proposition b

The class group &4(0) acts faithfully and transitively on the set of O-
isomorphism classes of primitive @-oriented elliptic curves.

In particular, for fixed primitive @-oriented E, we obtain a bijection of sets:
e(O) — SSI (p) [a] —— [a] - E

For any ideal class [a] and generating set {qy, ..., q,.} of small primes, coprime to
[0k : O], we can find an identity [a] = [q5* - ... - g"], in order to compute the
action via a sequence of low-degree isogenies.
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OSIDH Action of the class group

VORTEX

We define a vortex to be the ¢-isogeny subgraph whose vertices are

isomorphism classes of @-oriented elliptic curves with £-maximal endomorphism
ring, equipped with an action of &(0).

Instead of considering the union of different isogeny graphs, we focus on one
single crater and we think of all the other primes as acting on it: the resulting
object is a single isogeny circle rotating under the action of ¢(0).
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OSIDH Action of the class group

WHIRLPOOL

The action of €£(0) extends to the union |, SS, (p) over all superorders 0;
containing O via the surjections ¢¢(0) — C4(0O;).

We define a whirlpool to be a complete isogeny volcano acted on by the class
group. We would like to think at isogeny graphs as moving objects.

>
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Actually, we would like to take the ¢-isogeny graph on the full €2(0 )-orbit. This
might be composed of several £-isogeny orbits (craters), although the class

group is transitive.

OSIDH
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WHIRLPOOL: AN EXAMPLE

The set of multiple Z-volcanoes is called ¢/-cordillera.

Example. p = 353, ¢ = 2, elliptic curves with 344 [ 455-rational points.

A ANANAN
() @ (w) @) ) G) @) ()

A whirlpool is the union of the two, shuffled by the class group of Z[2v/—82].
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SOGENY CHAINS
)

An (-isogeny chain of length n from E,, to E is a sequence of isogenies of
degree /-

%o 1 [ [
Ey—FE —EFEy,— .. — E =E.
The ¢-isogeny chain is without backtracking if ker (¢, o ¢;) # E;[{], Vi.
The isogeny chain is descending (or ascending, or horizontal) if each ¢, is
L descending (or ascending, or horizontal, respectively).

The dual isogeny of ¢, is the only isogeny ¢, , satisfying ker (¢, © ¢;) = E;[/].
Thus, an isogeny chain is without backtracking if and only if the composition of
two consecutive isogenies is cyclic.

The composition of the isogenies in an ¢-isogeny chain is cyclic if and only
if the £-isogeny chain is without backtracking.
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OSIDH Isogeny chains and ladders

PUSHING ISOGENIES ALONG A CHAIN

Suppose that (E;, ¢,) is an £-isogeny chain, with E, equipped with an
O -orientation ¢ : O — End(Ey).

For each i, ¢; : K — End"(E;) is the induced K-orientation on E,. Write
O, =End(E,) N ¢;(K) with O, = OF.

If q is a split prime in O over q # ¢, p, then the isogeny
Yo+ By = Fy = Ey/Ey [q]
can be extended to the ¢-isogeny chain by pushing forward C, = E; [q]:
Co=Eyla], C, = ¢o(Cy), e, Cp =y 1(Cyy)
and defining F; = E,/C,;.

Ei1/Ci—1 = F;i—1 ’ F, =FE;/C;
o——0
%-1}1 %Wq
o %1 .o

Ci1CE, ¢ E; D C;
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LADDERS
)

An (£-ladder of length n and degree ¢ is a commutative diagram of £-isogeny
chains (E;, ¢;), (F};, ¢;) of length n connected by g¢-isogenies 1, : E;, — F,

E E E FE,
.0 o .1 1 .2 2 Pn-1 P
¢0J 1/){ TXJQJ w,{
([ 7 o 7 ([ 7 7 [ ]
Fo ) Fi o} s o n—1 F,

\_
We also refer to an £-ladder of degree ¢ as a ¢-isogeny of ¢-isogeny chains.

We say that an ¢-ladder is ascending (or descending, or horizontal) if the
£-isogeny chain (E;, ¢,) is ascending (or descending, or horizontal, respectively).

We say that the ¢-ladder is level if 1), is a horizontal g-isogeny. If the ¢-ladder is
descending (or ascending), then we refer to the length of the ladder as its depth
(or, respectively, as its height).
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EFFECTIVE ENDOMORPHISM RINGS AND ISOGENIES

We say that a subring of End(E) is effective if we have explicit polynomials or
rational functions which represent its generators.

Examples. Z in End(FE) is effective. Effective imaginary quadratic subrings
O C End(E), are the subrings @ = Z[r] generated by Frobenius

In the Couveignes-Rostovtsev-Stolbunov constructions, or in the CSIDH
protocol, one works with O = Z[x].

» For large finite fields, the class group of ¢ is large and the primes q in O
have no small generators.
Factoring the division polynomial ¢, (z) to find the kernel polynomial of
degree (¢ — 1)/2 for E[q] becomes relatively expensive.

» In SIDH, the ordinary protocol of De Feo, Smith, and Kieffer, or CSIDH, the
curves are chosen such that the points of E[q] are defined over a small
degree extension «/k, and working with rational points in E(k).

» We propose the use of an effective CM order O, of class number 1.
The kernel polynomial can be computed directly without need for a splitting
field for E[q], and the computation of a generator isogeny is a one-time
precomputation.
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MODULAR APPROACH

The use of modular curves for efficient computation of isogenies has an
established history (see Elkies)

Modular Curve

The modular curve X(1) ~ P! classifies elliptic curves up to isomorphism,
and the function j generates its function field.

The modular polynomial ®,,(X,Y") defines a correspondence in X(1) x X(1)
such that @, (j(E), j(E’")) = 0 if and only if there exists a cyclic m-isogeny ¢
from E to E’, possibly over some extension field.

~

A moaular (-isogeny chain of length n over k is a finite sequence
(JosJ1» -+ Jn) IN k such that ®,(j;, j;,) =0for 0 <i <n.

A modular ¢-ladder of length n and degree ¢ over k is a pair of modular
¢-isogeny chains

(j07j17 7-7n> and (]Eﬁ]i) aJ;L>7

Y such that @, (j;, j;) = 0.
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OSIDH - INTRODUCTION

We consider an elliptic curve E,, with an effective endomorphism ring (eg.
Jo = 0,1728) and a chain of ¢-isogenies.

Leonardo COLO (12M-AMU) OSIDH 21 June 2019
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OSIDH - INTRODUCTION

We consider an elliptic curve E,, with an effective endomorphism ring (eg.
Jo = 0,1728) and a chain of ¢-isogenies.

» For ¢ = 2 (or 3) a suitable candidate for O could be the Gaussian integers
Z[i] or the Eisenstein integers Z[w].
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OSIDH - INTRODUCTION

We consider an elliptic curve E,, with an effective endomorphism ring (eg.

Jo = 0,1728) and a chain of ¢-isogenies.
» Horizontal isogenies must be endomorphisms
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OSIDH - INTRODUCTION

We consider an elliptic curve E,, with an effective endomorphism ring (eg.

Jo = 0,1728) and a chain of ¢-isogenies.
» We push forward our g-orientation obtaining Fj.
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OSIDH - INTRODUCTION

We consider an elliptic curve E,, with an effective endomorphism ring (eg.

Jo = 0,1728) and a chain of ¢-isogenies.
» We repeat the process for F,.
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OSIDH - INTRODUCTION

We consider an elliptic curve E,, with an effective endomorphism ring (eg.
Jo = 0,1728) and a chain of ¢-isogenies.
» And again till £,,.

Leonardo COLO (12M-AMU) OSIDH 21 June 2019
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HOW FAR SHOULD WE GO?

In order to have the action of &(09) cover a large portion of the supersingular
elliptic curves, we require (" ~ p, i.e., n ~ log,(p).

> #5545 (p) = h(0,,) =class number of O, = Z + {"O.
» Class Number Formula

WZ +mOy) = MH (1_ (ﬁ) 1)

Ok : 0%] i p/p
» Units
{£1} if A < —4 1 fAg<—4
OF =< {1, +i} fAy=—4 = [05:0°]=42 ifAr=—4
{+1, 4w, +w?} AL =-3 3 ifAg=-3

» Number of Supersingular curves

#88(p) = [15] +¢, ¢ €{0.1,2}

" 1-0m A 1 D .
Therefore, h(€"0y) = 2or3 (1 — (71() Z) = [E} +e, = p~ Y
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OSIDH - INTRODUCTION & MODULAR APPROACH

If we look at modular polynomials ®,(X,Y’) and ®,(X,Y") we realize that all we
need are the j-invariants:
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OSIDH - INTRODUCTION & MODULAR APPROACH

If we look at modular polynomials ®,(X,Y’) and ®,(X,Y") we realize that all we
need are the j-invariants:

Since j, is given (the initial chain is known) and supposing that j; has already
been constructed, j; is determined by a system of two equations
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HOW MANY STEPS BEFORE THE [DEALS ACT DIFFERENTLY?

E! # E! if and only if g2 N O, is not principal and the probability that a random
ideal in O, is principal is 1/h(0;). In fact, we can do better; we write Oy = Z[w]
and we observe that if g2 was principal, then

¢*> = N(g?) = N(a + bliw)
since it would be generated by an element of @, = Z + £!9 .. Now

N(a + bl") = a® + abtl® 4+ b%sf*  where  w? +tw+s=0

Thus, as soon as £?* >> ¢2, we are guaranteed that g2 is not principal.

Leonardo COLO (12M-AMU) OSIDH 21 June 2019 31/47




A FIRST NAIVE PROTOCOL

PUBLIC DATA: A chain of ¢-isogenies Ey, — E; — ... = E,,
ALICE BOB
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A FIRST NAIVE PROTOCOL

PUBLIC DATA: A chain of ¢-isogenies Ey, — E; — ... = E,,
ALICE BOB

Choose a primitive 50 Lo
(O x-orientation of CE\\ QE\\
Ey oA leh
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A FIRST NAIVE PROTOCOL

PUBLIC DATA: A chain of ¢-isogenies Ey, — E; — ... = E,,
ALICE BOB

Choose a primitive 50 Lo
(O x-orientation of CE\\ QE\\
Ey oA leh

Push it forward to
depth n

Ey=Fy—F,—..=F, E=G—=G —..=G,
¢A d)B
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A FIRST NAIVE PROTOCOL

PUBLIC DATA: A chain of ¢-isogenies Ey, — E; — ... = E,,

ALICE BOB
Choose a primitive 50 Lo
(O x-orientation of CE\\ QE\\

EO I’!‘O GO

Sgé?h'tnfomard O B —F 5 F . oF, E=Gy—G —..—G
¢A d)B

Exchange data ><
{Gihi {Fiho

n
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A FIRST NAIVE PROTOCOL

PUBLIC DATA: A chain of ¢-isogenies Ey, — E; — ... = E,,

ALICE BOB
Choose a primitive 50 Lo
(O x-orientation of CE\\ QE\\

EO I’!‘O éO

Pushitforwardto o o L o 5 F Ey=Gy— Gy = =G

depth n n
¢A d)B
Exchange data ><
{GiYin {Fihia
Compute shared Compute ¢4 - {G,} Compute ¢ - {F;}

secret
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A FIRST NAIVE PROTOCOL

PUBLIC DATA: A chain of ¢-isogenies Ey, — E; — ... = E,,

ALICE BOB
Choose a primitive 50 Lo
(O x-orientation of QE\\ QE\\

EO I’!‘O éO

Pushitforwardto o o L o 5 F Ey=Gy— Gy = =G

depth n n
¢A d)B
Exchange data ><
{GiYin {Fihia
Compute shared Compute ¢4 - {G,} Compute ¢ - {F;}

secret
In the end, Alice and Bob will share a new chain B, - H, — ... = H,
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GRAPHIC REPRESENTATION
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GRAPHIC REPRESENTATION

Eqge of
E1-4)-F1
Eoe
E,»
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GRAPHIC REPRESENTATION

E1-4)-F1
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GRAPHIC REPRESENTATION

E104)0F1
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GRAPHIC REPRESENTATION /F”

Ejo——eF;

E e——eF,

Leonardo COLO (12M-AMU) OSIDH 21 June 2019 33/47



GRAPHIC REPRESENTATION /F”

Eio——eG,y

E, o——eG,
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GRAPHIC REPRESENTATION

=0 °
AN
5

HQOA“Q%
[N
N

HloA"onm
LI\
s

Ho?"onw
N
<5

— Alice

— Bob




A FIRST NAIVE PROTOCOL - wEAKNESS

In reality, sharing (F;) and (G,) reveals too much of the private data.
From the short exact sequence of class groups:

W = (0) = A(OF) = 1

O (z/trz)”
an adversary can compute successive approximations (mod ¢¢) to ¢, and ¢
modulo ¢™ hence in ¢4(0). P
e |
. \\
\
/3
/| &
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AN EXAMPLE: COMPUTE SUCCESSIVE APPROXIMATIONS

Take ¢ = p* = 10007°. E; : y* = x® + 1 of j-invariant 0 is supersingular over F,.
We orient E, by 0 = Z|w] < End(E,) where w? + w + 1.
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AN EXAMPLE: COMPUTE SUCCESSIVE APPROXIMATIONS

. Algorithm. Action of an ideal [(g, a + bliw)] € CUZ + €10 ) lying over g on the |
' set of primitive 0-oriented elliptic curves SS% (p).

Input: The j-invariants of two elliptic curves £ and E” over [ known to be
¢-isogenous.
Output: The ideal [a] € {[q], [q]} such that [a] * j(E) = j(E).

1. Compute g-division polynomial ().
2. Factor 1, (z) and find the factor f(x) corresponding to the desired isogeny

3. Pick aroot of f, i.e., a g-torsion point Plying in the kernel of ¢.
4. Set mO = qq = (¢, a + bliw)(q,a’ + b llw).
5. If [a] P+ [b] - [('w] P = Oy

Return q.

Else
Return g.

¢ E I
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AN EXAMPLE: COMPUTE SUCCESSIVE APPROXIMATIONS

The action of ¢iw on E; will be given by the composition

(bifl°"'°¢2°¢1°¢0°[w]°(50°(510(520'"0(51'71

21 June 2019
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AN EXAMPLE: COMPUTE SUCCESSIVE APPROXIMATIONS

Observe that this is exactly the definition of orientation by O, transmitted to E;
along theisogeny £, — E; - E;, — ... = E,.
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THE ALGORITHM

Computing successive approxim

N

~

We are given two sequences {E;}" , and {F;},. Suppose that E;, = F;
for all i« < m; there are [ possibilities for F,,.;, and we need to find 8 €
End(Og) such that

1. f=1mod ™ sothat 5, E; = F; = E; foralli < m;
2. B*Em+1 = Fm+1;

3. [ is smooth with small exponents (n order to determine the action of
modulo ¢™*1 effectively).

Once that we have constructed « such that o, E;, = F, forallm < i <k,
then we can substitute 1 with

1. B=amod ¢* sothat B,E,,; = Fj ;.

COLO (12M-AMU) OSIDH 21 June 2019
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TOWARDS A MORE SECURE OSIDH PROTOCOL

How can we avoid this while still giving the other enough information?

Instead Alice and Bob can send only F' = F,, and G = G,.

Problem Once Alice receives the unoriented curve G,, computed by Bob she
also needs additional information for each prime p;:

Bob’s curve
G

- - ([ - -
Horizontal p,-isogeny Horizontal p,-isogeny
with kernel G, [p;] with kernel G, [p;]

n

In fact, she has no information as to which directions — out of p, + 1 total
p,-isogenies — to take as p, and p,.

Solution They share a collection of local isogeny data (£}, [q,]) and (G, [q,])
which identifies the isogeny directions (out of g; + 1) for a system of small split
primes (q;) in O.
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0SIDH PROTOCOL

PUBLIC DATA: A chain of ¢-isogenies £, — E; — ... — E,, and a set of
splitting primes py,...,p, CO CENdE, N K C O
ALICE BOB
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0SIDH PROTOCOL

PUBLIC DATA: A chain of ¢-isogenies £, — E; — ... — E,, and a set of
splitting primes py,...,p, CO CENdE, N K C O
ALICE BOB

(617--'7615) (d17"~7dt)

Choose integers
in a bound [—r, 7]

Leonardo COLO (12M-AMU) OSIDH 21 June 2019 38/47



0SIDH PROTOCOL

PUBLIC DATA: A chain of ¢-isogenies £, — E; — ... — E,, and a set of
splitting primes py,...,p, CO CENdE, N K C O
ALICE BOB

(617--'7615) (d17"~7dt)

Fn :En/En [pil"'p:t] Gn :En/En [ptlilp?t]

Choose integers
in a bound [—r, 7]
Construct an
isogenous curve
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0SIDH PROTOCOL

PUBLIC DATA: A chain of ¢-isogenies £, — E; — ... — E,, and a set of
splitting primes py,...,p, CO CENdE, N K C O
ALICE BOB

(617--'7615) (d17"~7dt)

Fn :En/En [pil"'p:t] Gn :En/En [ptlilp?t]

Choose integers
in a bound [—r, 7]
Construct an
isogenous curve
Precompute all PP R gl

) (=) (=r+1) (1)
. . . —F, G, G, VG G
directions Vi ’ ™ B e

n n,
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OSIDH The protocol

OSIDH PROTOCOL

PUBLIC DATA: A chain of ¢-isogenies £, — E; — ... — E,, and a set of
splitting primes py,...,p, CO CENdE, N K C O
ALICE BOB

Choose integers
in a bound [—r, 7] (ers s e) (dy, .., d;)
Construct an e . J 4
isogenous curve  Tn = En/En o1t b G =B, /E, [p1" - pt']
Precompute all
directions Vi
... and their
conjugates

(=) (—r+1) (1) (=7) (—r+1) (1)
Fn,i anyi <—.4.(—Fn’i<—Fn G ieGn_’i emeGn,ieG"

n,

(1) (r—1) () (1) (r—1) (r)
FnﬁFn’i%.uﬁFn’i ﬂFn’I GnﬁGnyi%.uﬂGnyi ﬂGnyl
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OSIDH The protocol

OSIDH PROTOCOL

PUBLIC DATA: A chain of ¢-isogenies £, — E; — ... — E,, and a set of

splitting primes py, ...

p, COCENdE, NK C Oy

Choose integers
in a bound [—r, 7]
Construct an
isogenous curve
Precompute all
directions Vi

... and their
conjugates
Exchange data

Leonardo COLO (I2M-AMU)

ALICE BOB
(617--'7615) (d17"~7dt)

Fn :En/En [pil"'p:t] Gn :En/En [ptlilp?t]

(=7) (—=r+1) (1
F, FFn,i ot F

)
Ji n,i

«F G(’?FG(J:H)HMHGSLFG

n n, n

(r)

(1) (r—1) () (1) (r—1)
FnﬁFn’i%.uﬁFn’i ﬂFn’I GnﬁGnyi%.uﬂGnyi ﬂGnyl

Gn+direoticms><ﬂl+directions
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OSIDH The protocol

OSIDH PROTOCOL

PUBLIC DATA: A chain of ¢-isogenies £, — E; — ... — E,, and a set of

splitting primes py, ...

p, COCENdE, NK C Oy

Choose integers
in a bound [—r, 7]
Construct an
isogenous curve
Precompute all
directions Vi

... and their
conjugates
Exchange data

Compute shared
data

Leonardo COLO (12M-AMU)

ALICE BOB
(617--'7615) (d17"~7dt)

Fn = En/En [pil p:t] Gn = En/En [ptlil p?t]

(=7) (—7r+1) (1 (=7) (—=r+1) (1)
F, FFn,i = F " F G, eGn_’i emeGn,ieGn

)
y1 n,i n N

(r)

Fp P s F S FD GG =G NG,

n,1 n,i

Gn+direoticms><ﬂl+directions

Takes e; steps in Takes d, steps in
p,;-isogeny chain & push p,;-isogeny chain & push
forward information for forward information for
j>i. j>i.
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0SIDH PROTOCOL

PUBLIC DATA: A chain of ¢-isogenies £, — E; — ... — E,, and a set of
splitting primes py,...,p, CO CENdE, N K C O
ALICE BOB

(617--'7615) (d17"~7dt)

Fn:En/En [pilp:t] Gn :En/En [ptlilp?t]

Choose integers
in a bound [—r, 7]
Construct an
isogenous curve
Precompute all
directions Vi

... and their
conjugates Fp P s F Y S FD G=G .G NG

Exchange data ><
G,,+directions F, +directions

(=7) (—7r+1) (1 (=7) (—=r+1) (1)
Fn)i FFn,i = F " F GnieGn_’i emeGn,ieGn

)
n,i n N

(r)
n,1

Takes e; steps in Takes d, steps in
Compute shared p,;-isogeny chain & push p,;-isogeny chain & push
data forward information for forward information for
j>i. j>i.

In the end, they share H,, = E,,/E,, [p?*dl - ~pft+dt]
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OSIDH The protocol

OSIDH PROTOCOL - GRAPHIC REPRESENTATION |

The first step consists of choosing the secret keys; these are represented by a
sequence of integers (e, ..., e;) such that |e,| < r. The bound r is taken so that
the number (2r + 1)* of curves that can be reached is sufficiently large. This
choice of integers enables Alice to compute a new elliptic curve

E

Fn = eln €y
E,[py" - py]
by means of constructing the following commutative diagram

By oA i i i
1‘5‘0 o) E Ey Ly Eqy
G G GG G 1 G &
Eolp1] Eo[p] Eopype] Eolpp5?] Eolpitpy Eo[pyt.py"]
E0—0—— — 00— — 0 ——@—— - — O
E0 @ @@ @ @5 ——> @ n

F,ESI'EZ) E§€1~~-~€/71) Fr([elwwei)
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OSIDH The protocol

OSIDH PROTOCOL - GRAPHIC REPRESENTATION I

Once that Alice obtain from Bob the curve G,, together with the collection of
data encoding the directions, she takes e, steps in the p,-isogeny chain and
push forward all the p,-isogeny chains for i > 1.

T,z

(e1,e2) j”«z)
T T
I | | |

P2 /‘
P4
& ”(—--W—G(Fll)é P e B ) Gn/ o) G2 ey )
// // J P
Gz’
ched
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OSIDH The protocol
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CLASSICAL HARD PROBLEMS

Endomorphism ring problem

Given a supersingular elliptic curve E/F ,» and m = [p], determine
1. End(E) as an abstract ring.

2. An explicit endomorphism ¢ € End(E) — Z.

3. An explicit basis B° for End’(E) over Q.

4. An explicit basis % for End(E) over Z.

N\

Endomorphism ring transfer proble

Given an isogeny chain
Ey—FE — .. —E

and End(E,), determine End(E,,).

OSIDH

21 June 2019
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HARD PROBLEMS

Endomorphism Generators Prob )

Given a supersingular elliptic curve E/F ., © = [p], an imaginary quadratic
order @ admitting an embedding in End(E) and a collection of compatible
(0, q™)-orientations of E for (q,n) € S, determine

1. An explicit endomorphism ¢ € @ C End(FE)
2. A generator ¢ of O C End(E)

Suppose S = {(q,n)} = {(q1,71), -, (44, n,) } Where qq, ..., q, are pairwise
distinct primes such that

[0,...,nq] X ... x [0, ..., n,] — CL(O)
(€1 mmmvey) — Ay - ay]
is injective. Then, the problem should remain difficult.
We can reformulate this in a way that allows (g;,n,) € S:
[—nq,y ey nq] X oo X [=1yy e, 1y ] — C(O)
(s mmse) — a7 - 4]
is injective. If e; < 0, then q§* corresponds to @)Iei\_
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SECURITY PARAMETERS - FInst CHOICE

Consider an arbitrary supersingular endomorphism ring Oy C B with
discriminant p2. There is a positive definite rank 3 quadratic form

disc: 0y /7 — 7

A2 () ng a —— |disc(a)| = |disc (Z [a]) |

representing discriminants of orders embedding in Og.

The general order Oy has a reduced basis 1 A o, 1 A oy, 1 A a5 satisfying
|disc(1 A ;)| = A, where A; ~ p?/3

(Minkowski bound: ¢;p? < AjA,A; < cyp?).

In order to hide O,, in Oy we impose

log,(p)

Akl >ep?® = n~ 3

so that there is no special imaginary quadratic subring in Oy = End(E,,).
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OSIDH - VORTEX & WHIRLPOOL

We can read this scheme using the terminology introduced at the beginning.

After the choice of the secret key, we observe a vortex: Alice (respectively Bob)
acts on an isogeny crater (that in the case of O = Z [w] or Z [i] consists of a

single points) with the primes pi* - ... - py* (respectively q‘fl e qft).
This action is eventually transmitted along the ¢-isogeny chain and we get a
whirlpool. We can think of the isogeny volcano as rotating under the action of

the secret keys and the initial £-isogeny path transforming into the two secret
isogeny chains.
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CONCLUSIONS

By imposing the data of an orientation by an imaginary quadratic ring @0, we
obtain an augmented category of supersingular curves on which the class group
C(0) acts faithfully and transitively.

This idea is already implicit in the CSIDH protocol, in which supersingular curves
over [, are oriented by the Frobenius subring Z[r] = Z[,/~p].

In contrast we consider an elliptic curve E,, oriented by a CM order O of class
number one. To obtain a nontrivial group action, we consider ¢-isogeny chains,
on which the class group of an order @ of large index £™ in O acts.

The map from ¢-isogeny chains to its terminus forgets the structure of the
orientation, and the original curve £, giving rise to a generic s.s. elliptic curve.

We define a new oriented supersingular isogeny Diffie-Hellman (OSIDH)
protocol, which has fewer restrictions on the proportion of supersingular curves
covered and on the torsion group structure of the underlying curves.

Moreover, the group action can be carried out effectively solely on the
sequences of moduli points (such as j-invariants) on a modular curve, thereby
avoiding expensive isogeny computations, and is further amenable to speedup
by precomputations of endomorphisms on the base curve E,.
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This is a work in progress and we still want to develop the following aspects:
» Security analysis and setting security parameters.
» Implementation and algorithmic optimization.
» Use of canonical liftings.

MERCI POUR VOTRE ATTENTION
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