ORIENTING SUPERSINGULAR ISOGENY GRAPHS

LEONAROOCOLȮ \& DAVIDKOHEL

Institut de Mathématiques de Marseille
Séminaire C2
Paris, 21 June 2019

ELLIPTIC CURVES

Let k be a field of characteristic $\neq 2,3$. An elliptic curve E defined over k is a smooth projective curve of genus 1 defined by a Weierstrass equation

$$
E: Y^{2} Z=X^{3}+a X Z^{2}+b Z^{3}
$$

where $a, b \in k$ are such that $4 a^{3}+27 b^{2} \neq 0$.
In general we work with the affine equation of E, i.e., $E: y^{2}=x^{3}+a x+b$.
We distinguish the point $O=(0: 1: 0)$ (called point at infinity).
There is a way of adding points on E based on Bezout's theorem (we fix the point O and we define the sum of three co-linear points to be O). This law endows the set of k-rational points with a group structure where O plays the role of identity element. We write $E(k)$.

ISOMORPHISMS OF ELLIPTIC CURVES

An isomorphism of elliptic curves is an invertible morphism of algebraic curves.
They are often referred to as admissible (linear) change of variables.

Isomorphisms

Invertible algebraic maps between elliptic curves are of the form

$$
(x, y) \rightarrow\left(u^{2} x, u^{3} y\right) \quad \text { for some } u \in \bar{k} .
$$

Isomorphisms between elliptic curves are group isomorphisms.
Isomorphism classes are described by an invariant:

j-invariant

The j-invariant of an elliptic curve $E: y^{2}=x^{3}+a x+b$ is

$$
j(E)=1728 \frac{4 a^{3}}{4 a^{3}+27 b^{2}}
$$

Two elliptic curves E, E^{\prime} are isomorphic over \bar{k} if and only if $j(E)=j\left(E^{\prime}\right)$.

GROUP STRUCTURE

Let E be an elliptic curve defined over a field k and m an integer. The m-torsion subgroup of E is

$$
E[m]=\{P \in E(\bar{k}) \mid m P=O\}
$$

Torsion structure

Let E be an elliptic curve defined over an algebraic closed field \bar{k} of characteristic p. If p does not divide m or $p=0$, then

$$
E[m] \simeq \frac{\mathbb{Z}}{m \mathbb{Z}} \times \frac{\mathbb{Z}}{m \mathbb{Z}}
$$

If the $p>0$, then

$$
E\left[p^{r}\right] \simeq \begin{cases}\frac{\mathbb{Z}}{p^{r} \mathbb{Z}} & \text { Ordinary case } \\ \{O\} & \text { Supersingular case }\end{cases}
$$

ISOGENIES

We want to study relationships between isomorphisms classes of elliptic curves.

Isogenies

An isogeny $\phi: E \rightarrow E^{\prime}$ between two elliptic curves is

- A map $E \rightarrow E^{\prime}$ such that $\phi(P+Q)=\phi(P)+\phi(Q)$.
- A surjective group morphisms (in the algebraic closure).
- A group morphism with finite kernel.
- A non-constant algebraic map of projective varieties such that $\phi\left(O_{E}\right)=O_{E^{\prime}}$.
- An algebraic morphism given by rational maps

$$
\phi(x, y)=\left(\frac{f_{1}(x, y)}{g_{1}(x, y)}, \frac{f_{2}(x, y)}{g_{2}(x, y)}\right)
$$

The first example of isogeny is the multiplication by n map: $[n]: E \rightarrow E$. If $k=\mathbb{F}_{q}$ we also have the Frobenius morphism $\pi:(x, y) \rightarrow\left(x^{q}, y^{q}\right)$.

ATTRIBUTES OF ISOCENIES

Let $\phi: E \rightarrow E^{\prime}$ be an isogeny defined over a field $k, \operatorname{char}(k)=p$. We define $k(E), k\left(E^{\prime}\right)$ to be the function fields of E and E^{\prime}; by composing ϕ with elements of $k\left(E^{\prime}\right)$ we obtain a subfield $\phi^{*}\left(k\left(E^{\prime}\right)\right)$ of $k(E)$.

- The degree of ϕ is defined to be $\operatorname{deg} \phi=\left[k(E): \phi^{*} k\left(E^{\prime}\right)\right]$.
- ϕ is said separable, inseparable or purely inseparable if the corresponding extension of function fields is.
- If ϕ is separable then $\operatorname{deg} \phi=\#$ ker ϕ while in the purely inseparable case ker $\phi=\{O\}$ and $\operatorname{deg} \phi=p^{r}$ some r.
- Given any isogeny $\phi: E \rightarrow E^{\prime}$ there always exists a unique isogeny $\hat{\phi}: E^{\prime} \rightarrow E$, called the dual isogeny, such that

$$
\phi \circ \hat{\phi}=[\operatorname{deg} \phi]_{E^{\prime}} \quad \hat{\phi} \circ \phi=[\operatorname{deg} \phi]_{E}
$$

THEOREMS ON ISOGENIES

Theorem

For every finite subgroup $G \subset E(\bar{k})$, there exist a unique (up to isomorphism) elliptic curve $E^{\prime}=E / G$ and a unique separable isogeny $E \rightarrow E^{\prime}$ of degree $\# G$. Further, any separable isogeny arises in this way.

Given G, Velu's formula enables one to find explicit description for ϕ.

Theorem (Tate)

Two elliptic curves E and E^{\prime} defined over a finite field k are isogenous over k if and only if $\# E(k)=\# E^{\prime}(k)$.

Observe that there exists an algorithm (Schoof - 1985) which, using isogenies, compute the cardinality of E in polynomial time.

ENDOMORPHISMS

An endomorphism of an elliptic curve E is an isogeny form E to itself.

Endomorphism ring

The endomorphism ring $\operatorname{End}(E)=\operatorname{End}_{\bar{k}}(E)$ of an elliptic curve E / k is the set of all endomorphisms of E (together with the 0-map) endowed with sum and multplication.

The endomorphism ring always contains a copy of \mathbb{Z} in the form of the multiplication by m maps.
If k is a finite field we also have the Frobenius endomorphism.

Theorem (Hasse)

Let E be an elliptic curve defined over a finite field with q elements. Its Frobenius endomorphism satisfies a quadratic equation $\pi^{2}-t \pi+q=0$ for some $|t| \leq 2 \sqrt{q}$, called the trace of π.

THEOREMS ON ENDOMORPHISMS

Let E be an elliptic curve defined over a finite field k. End (E) has dimension either 2 or 4 as a \mathbb{Z}-module.

Theorem (Deuring)

Let E / k be an elliptic curve over a finite field k of characteristic $p>0$. End (E) is isomorphic to one of the following:

- An order \mathcal{O} in a quadratic imaginary field; we say that E is ordinary.
- A maximal order in a quaternion algebra; we say that E is supersingular.

Isogenous curves are always either both ordinary, or both supersingular.

Theorem (Serre-Tate)

Two elliptic curves E_{0} and E_{1} defined over a finite field k are isogenous if and only if $\operatorname{End}\left(E_{0}\right) \otimes_{\mathbb{Z}} \mathbb{Q} \simeq \operatorname{End}\left(E_{1}\right) \otimes_{\mathbb{Z}} \mathbb{Q}$.

ISOGENY GRAPHS

Definition

Given an elliptic curve E over k, and a finite set of primes S, we can associate an isogeny graph $\Gamma=(E, S)$

- whose vertices are elliptic curves isogenous to E over \bar{k}, and
- whose edges are isogenies of degree $\ell \in S$.

The vertices are defined up to \bar{k}-isomorphism (therefore represented by j-invariants), and the edges from a given vertex are defined up to a k-isomorphism of the codomain.

If $S=\{\ell\}$, then we call Γ an ℓ-isogeny graph.
For an elliptic curve E / k and prime $\ell \neq \operatorname{char}(k)$, the full ℓ-torsion subgroup is a 2-dimensional \mathbb{F}_{ℓ}-vector space. Consequently, the set of cyclic subgroups is in bijection with $\mathbb{P}^{1}\left(\mathbb{F}_{\ell}\right)$, which in turn are in bijection with the set of ℓ-isogenies from E.
Thus the ℓ-isogeny graph of E is $(\ell+1)$-regular (as a directed multigraph). In characteristic 0 , if $\operatorname{End}(E)=\mathbb{Z}$, then this graph is a tree.

ORDINARY ISOGENY GRAPHS: VOLCANOES

Let $\operatorname{End}(E)=\mathcal{O} \subseteq K$. The class group $\mathrm{Cl}(\mathcal{O})$ (finite abelian group) acts faithfully and transitively on the set of elliptic curves with endomorphism ring \mathcal{O} :

$$
E \longrightarrow E / E[\mathfrak{a}] \quad E[\mathfrak{a}]=\{P \in E \mid \alpha(P)=0 \forall \alpha \in \mathfrak{a}\}
$$

Thus, the CM isogeny graphs can be modelled by an equivalent category of fractional ideals of K.

$\operatorname{End}(E)$

STRUCTURE OF VOLCANOES

Let E and E^{\prime} be to elliptic curves with endomorphism rings \mathcal{O} and \mathcal{O}^{\prime} respectively and let $\phi: E \rightarrow E^{\prime}$ be an ℓ isogeny.

- If $\mathcal{O}=\mathcal{O}^{\prime}$ we say that ϕ is horizontal;
- If $\left[\mathcal{O}^{\prime}: \mathcal{O}\right]=\ell$ we say that ϕ is ascending;
- If $\left[\mathcal{O}: \mathcal{O}^{\prime}\right]=\ell$ we say that ϕ is descending.

Crater

The crater consists of $h\left(\mathcal{O}_{K}\right)=\# \mathcal{C} \ell\left(\mathcal{O}_{K}\right)$ Elliptic curves. Depending on the behaviour of ℓ in \mathcal{O}_{K} we can have one or multiple craters:

$\left(\frac{\Delta_{K}}{\ell}\right)=-1$

$\left(\frac{\Delta_{K}}{\ell}\right)=0$

$\left(\frac{\Delta_{K}}{\ell}\right)=+1$

The height of the volcano is $\nu_{\ell}\left(\left[\mathcal{O}_{K}: \mathbb{Z}[\pi]\right]\right)$.

SUPERSINGULAR ISOGENY GRAPHS

The supersingular isogeny graphs are remarkable because the vertex sets are finite : there are $(p+1) / 12+\epsilon_{p}$ curves. Moreover

- every supersingular elliptic curve can be defined over $\mathbb{F}_{p^{2}}$;
- all ℓ-isogenies are defined over $\mathbb{F}_{p^{2}}$;
- every endomorphism of E is defined over $\mathbb{F}_{p^{2}}$.

The lack of a commutative group acting on the set of supersingular elliptic curves $/ \mathbb{F}_{p^{2}}$ makes the isogeny graph more complicated.

For this reason, supersingular isogeny graphs have been proposed for

- cryptographic hash functions (Goren-Lauter),
- post-quantum SIDH key exchange protocol.

SIDH - L. DEEE08D. JA0. 200II

Supersingular isogeny Diffie-Hellman

- Fix two small primes ℓ_{A} and ℓ_{B};
- Choose a prime p such that $p+1=\ell_{A}^{a} \ell_{B}^{b} f$ for a small correction term f;
- Pick a random supersingular elliptic curve $E / \mathbb{F}_{p^{2}}: E\left(\mathbb{F}_{p^{2}}\right) \simeq\left(\frac{\mathbb{Z}}{(p+1) \mathbb{Z}}\right)^{2}$
- Alice consider $E\left[\ell_{A}^{a}\right]=\left\langle P_{A}, Q_{A}\right\rangle$ while Bob takes $E\left[\ell_{B}^{b}\right]=\left\langle P_{B}, Q_{B}\right\rangle$.
- Secret Data: $R_{A}=m_{A} P_{A}+n_{A} Q_{A}$ and $R_{B}=m_{B} P_{B}+n_{B} Q_{B}$.
- Private Key: isogenies $\phi_{A}: E \rightarrow E_{A}=E / E\left\langle R_{A}\right\rangle$ and $\phi_{B}: E \rightarrow E_{B}=E / E\left\langle R_{B}\right\rangle$.
- Shared Data: $E_{A}, \phi_{A}\left(P_{B}\right), \phi_{A}\left(Q_{B}\right)$ and $E_{B}, \phi_{B}\left(P_{A}\right), \phi_{B}\left(Q_{A}\right)$.
- Shared Key: $E / E\left\langle R_{A}, R_{B}\right\rangle=E_{B} /\left\langle\phi_{B}\left(R_{A}\right)\right\rangle=E_{A} /\left\langle\phi_{A}\left(R_{B}\right)\right\rangle$.

CSIDH - w. CASTRYCK \& t. LANGE \& C. MARTINDALE \& L. PANNY \& J. RENES, 2018

 It is an adaptation of the Couveignes-Rostovtsev-Stolbunov scheme to supersingular elliptic curves.
Commutative Supersingular isogeny Diffie-Hellman

- Fix a prime $p=4 \cdot \ell_{1} \cdot \ldots \cdot \ell_{t}-1$ for small distinct odd primes ℓ_{i}.
- The elliptic curve $E_{0}: y^{2}=x^{3}+x / \mathbb{F}_{p}$ is supersingular and its endomorphism ring restricted to \mathbb{F}_{p} is $\mathcal{O}=\mathbb{Z}[\pi]$ (commutative).
- All Montgomery curves $E_{A}: y^{2}=x^{3}+A x^{2}+x / \mathbb{F}_{p}$ that are supersingular, appear in the $\mathcal{C} \ell(\mathcal{O})$-orbit of E_{0} (easy to store data).
- Private Key: it is an n-tuple of integers $\left(e_{1}, \ldots, e_{t}\right)$ sampled in a range $\{-m, \ldots, m\}$ representing an ideal class $[\mathfrak{a}]=\left[\mathfrak{l}_{1}^{e_{1}} \cdot \ldots \cdot \mathfrak{l}_{t}^{e_{t}}\right] \in \mathcal{C} \ell(\mathcal{O})$ where $\mathfrak{l}_{i}=\left(\ell_{i}, \pi-1\right)$.
- Public Key: The Montgomery coefficients A of the elliptic curve $E_{A}=[\mathfrak{a}] \cdot E_{0}: y^{2}=x^{3}+A x^{2}+x$.
- Shared Key: If Alice and Bob have private key (\mathfrak{a}, A) and (\mathfrak{b}, B) then they can compute the shared key $E_{A B}=[\mathfrak{a}][\mathfrak{b}] \cdot E_{0}=[\mathfrak{b}][\mathfrak{a}] \cdot E_{0}$.

MOTVATING OSIDH

The constraint to \mathbb{F}_{p}-rational isogenies can be interpreted as an orientation of the supersingular graph by the subring $\mathbb{Z}[\pi]$ of $\operatorname{End}(E)$ generated by the Frobenius endomorphism π.

We introduce a general notion of orienting supersingular elliptic curves and their isogenies, and use this as the basis to construct a general oriented supersingular isogeny Diffie-Hellman (OSIDH) protocole.

Motivation

- Generalize CSIDH.
- Key space of SIDH: in order to have the two key spaces of similar size, we need to take $\ell_{A}^{e_{A}} \approx \ell_{B}^{e_{B}} \approx \sqrt{p}$. This implies that the space of choices for the secret key is limited to a fraction of the whole set of supersingular j-invariants over $\mathbb{F}_{p^{2}}$.
- A feature shared by SIDH and CSIDH is that the isogenies are constructed as quotients of rational torsion subgroups. The need for rational points limits the choice of the prime p

ORIENTATIONS

Let \mathcal{O} be an order in an imaginary quadratic field. An \mathcal{O}-orientation on a supersingular elliptic curve E is an inclusion $\iota: \mathcal{O} \hookrightarrow \operatorname{End}(E)$, and a K-orientation is an inclusion $\iota: K \hookrightarrow \operatorname{End}^{0}(E)=\operatorname{End}(E) \otimes_{\mathbb{Z}} \mathbb{Q}$. An \mathcal{O}-orientation is primitive if $\mathcal{O} \simeq \operatorname{End}(E) \cap \iota(K)$.

Theorem

The category of K-oriented supersingular elliptic curves (E, ι), whose morphisms are isogenies commuting with the K-orientations, is equivalent to the category of elliptic curves with CM by K.

Let $\phi: E \rightarrow F$ be an isogeny of degree ℓ. A K-orientation $\iota: K \hookrightarrow \operatorname{End}^{0}(E)$ determines a K-orientation $\phi_{*}(\iota): K \hookrightarrow \operatorname{End}^{0}(F)$ on F, defined by

$$
\phi_{*}(\iota)(\alpha)=\frac{1}{\ell} \phi \circ \iota(\alpha) \circ \hat{\phi}
$$

Conversely, given K-oriented elliptic curves (E, ι_{E}) and (F, ι_{F}) we say that an isogeny $\phi: E \rightarrow F$ is K-oriented if $\phi_{*}\left(\iota_{E}\right)=\iota_{F}$, i.e., if the orientation on F is induced by ϕ.

ORIENTED ELLIPTIC CURVES AND VOLCANOES

As we have seen, one feature of the ℓ-isogeny graphs of CM elliptic curves is that in each component, depending on whether ℓ is split, inert, or ramified in K, there is a cycle of vertices, unique vertex, or adjacent pair of vertices which have ℓ-maximal endomorphism ring.

Chains of ℓ-isogenies leading away from these ℓ-maximal vertices have successively (and strictly) smaller endomorphism rings, by a power of ℓ.

This lets us define the depth of a CM elliptic curve E (i.e. vertex) in the ℓ-isogeny graph as the valuation of the index $\left[\mathcal{O}_{K}: \operatorname{End}(E)\right]$ at ℓ, which measures the distance to an ℓ-maximal vertex.

Consequently, we obtain a notion of depth at ℓ in the K-oriented supersingular ℓ-isogeny graph.

We also recover the notion of horizontal, ascending and descending isogenies.

CLASS GROUP ACTION

- $\operatorname{SS}(p)=$ \{supersingular elliptic curves over $\overline{\mathbb{F}}_{p}$ up to isomorphism\}.
- $\mathrm{SS}_{\mathcal{O}}(p)=\left\{\mathcal{O}\right.$-oriented s.s. elliptic curves over $\overline{\mathbb{F}}_{p}$ up to K-isomorphism $\}$.
- $\mathrm{SS}_{\mathcal{O}}^{p r}(p)=$ subset of primitive \mathcal{O}-oriented curves.

The set $\mathrm{SS}_{\mathcal{O}}(p)$ admits a transitive group action:

$$
\mathcal{C} \ell(\mathcal{O}) \times \mathrm{SS}_{\mathcal{O}}(p) \longrightarrow \mathrm{SS}_{\mathcal{O}}(p) \quad([\mathfrak{a}], E) \longmapsto[\mathfrak{a}] \cdot E=E / E[\mathfrak{a}]
$$

Proposition

The class group $\mathcal{C}(\mathcal{O})$ acts faithfully and transitively on the set of \mathcal{O} isomorphism classes of primitive \mathcal{O}-oriented elliptic curves.

In particular, for fixed primitive \mathcal{O}-oriented E, we obtain a bijection of sets:

$$
\mathcal{C \ell}(\mathcal{O}) \longrightarrow \mathrm{SS}_{\mathcal{O}}^{p r}(p) \quad[\mathfrak{a}] \longmapsto[\mathfrak{a}] \cdot E
$$

For any ideal class $[\mathfrak{a}]$ and generating set $\left\{\mathfrak{q}_{1}, \ldots, \mathfrak{q}_{r}\right\}$ of small primes, coprime to $\left[\mathcal{O}_{K}: \mathcal{O}\right]$, we can find an identity $[\mathfrak{a}]=\left[\mathfrak{q}_{1}^{e_{1}} \cdot \ldots \cdot \mathfrak{q}_{r}^{e_{r}}\right]$, in order to compute the action via a sequence of low-degree isogenies.

VORTEX

We define a vortex to be the ℓ-isogeny subgraph whose vertices are isomorphism classes of \mathcal{O}-oriented elliptic curves with ℓ-maximal endomorphism ring, equipped with an action of $\mathcal{C}(\mathcal{O})$.

Instead of considering the union of different isogeny graphs, we focus on one single crater and we think of all the other primes as acting on it: the resulting object is a single isogeny circle rotating under the action of $\mathcal{C \ell}(\mathcal{O})$.

WHIRLPOOL

The action of $\mathcal{C}(\mathcal{O})$ extends to the union $\bigcup_{i} S S_{\mathcal{O}_{i}}(p)$ over all superorders \mathcal{O}_{i} containing \mathcal{O} via the surjections $\mathcal{C} \ell(\mathcal{O}) \rightarrow \mathcal{C} \ell\left(\mathcal{O}_{i}\right)$.

We define a whirlpool to be a complete isogeny volcano acted on by the class group. We would like to think at isogeny graphs as moving objects.

WHRLPOOL

Actually, we would like to take the ℓ-isogeny graph on the full $\mathcal{C}\left(\mathcal{O}_{K}\right)$-orbit. This might be composed of several ℓ-isogeny orbits (craters), although the class group is transitive.

WHIRLPOOL: an example

The set of multiple ℓ-volcanoes is called ℓ-cordillera.
Example. $p=353, \ell=2$, elliptic curves with $344 \mathbb{F}_{353}$-rational points.

A whirlpool is the union of the two, shuffled by the class group of $\mathbb{Z}[2 \sqrt{-82}]$.

ISOGENY CHAINS

Definition

An ℓ-isogeny chain of length n from E_{0} to E is a sequence of isogenies of degree ℓ :

$$
E_{0} \xrightarrow{\phi_{0}} E_{1} \xrightarrow{\phi_{1}} E_{2} \xrightarrow{\phi_{2}} \ldots \xrightarrow{\phi_{n-1}} E_{n}=E .
$$

The ℓ-isogeny chain is without backtracking if $\operatorname{ker}\left(\phi_{i+1} \circ \phi_{i}\right) \neq E_{i}[\ell], \forall i$. The isogeny chain is descending (or ascending, or horizontal) if each ϕ_{i} is descending (or ascending, or horizontal, respectively).

The dual isogeny of ϕ_{i} is the only isogeny ϕ_{i+1} satisfying $\operatorname{ker}\left(\phi_{i+1} \circ \phi_{i}\right)=E_{i}[\ell]$. Thus, an isogeny chain is without backtracking if and only if the composition of two consecutive isogenies is cyclic.

Lemma

The composition of the isogenies in an ℓ-isogeny chain is cyclic if and only if the ℓ-isogeny chain is without backtracking.

PUSHING ISOGENIES ALONG A CHAIN

Suppose that $\left(E_{i}, \phi_{i}\right)$ is an ℓ-isogeny chain, with E_{0} equipped with an \mathcal{O}_{K}-orientation $\iota_{0}: \mathcal{O}_{K} \rightarrow \operatorname{End}\left(E_{0}\right)$.
For each $i, \iota_{i}: K \rightarrow \operatorname{End}^{0}\left(E_{i}\right)$ is the induced K-orientation on E_{i}. Write $\mathcal{O}_{i}=\operatorname{End}\left(E_{i}\right) \cap \iota_{i}(K)$ with $\mathcal{O}_{0}=\mathcal{O}_{K}$.
If \mathfrak{q} is a split prime in \mathcal{O}_{K} over $q \neq \ell, p$, then the isogeny

$$
\psi_{0}: E_{0} \rightarrow F_{0}=E_{0} / E_{0}[\mathfrak{q}]
$$

can be extended to the ℓ-isogeny chain by pushing forward $C_{0}=E_{0}[\mathfrak{q}]$:

$$
C_{0}=E_{0}[\mathfrak{q}], C_{1}=\phi_{0}\left(C_{0}\right), \ldots, C_{n}=\phi_{n-1}\left(C_{n-1}\right)
$$

and defining $F_{i}=E_{i} / C_{i}$.

$$
\begin{aligned}
& E_{i-1} / C_{i-1}=F_{i-1} \quad \ell \quad F_{i}=E_{i} / C_{i}
\end{aligned}
$$

LADDERS

Definition

An ℓ-ladder of length n and degree q is a commutative diagram of ℓ-isogeny chains $\left(E_{i}, \phi_{i}\right),\left(F_{i}, \phi_{i}^{\prime}\right)$ of length n connected by q-isogenies $\psi_{i}: E_{i} \rightarrow F_{i}$

We also refer to an ℓ-ladder of degree q as a q-isogeny of ℓ-isogeny chains.
We say that an ℓ-ladder is ascending (or descending, or horizontal) if the ℓ-isogeny chain $\left(E_{i}, \phi_{i}\right)$ is ascending (or descending, or horizontal, respectively). We say that the ℓ-ladder is level if ψ_{0} is a horizontal q-isogeny. If the ℓ-ladder is descending (or ascending), then we refer to the length of the ladder as its depth (or, respectively, as its height).

EFFECTVE ENDOMORPHISM RINGS AND ISOGENIES

We say that a subring of $\operatorname{End}(E)$ is effective if we have explicit polynomials or rational functions which represent its generators.

Examples. \mathbb{Z} in $\operatorname{End}(E)$ is effective. Effective imaginary quadratic subrings $\mathcal{O} \subset \operatorname{End}(E)$, are the subrings $\mathcal{O}=\mathbb{Z}[\pi]$ generated by Frobenius In the Couveignes-Rostovtsev-Stolbunov constructions, or in the CSIDH protocol, one works with $\mathcal{O}=\mathbb{Z}[\pi]$.

- For large finite fields, the class group of \mathcal{O} is large and the primes \mathfrak{q} in \mathcal{O} have no small generators.
Factoring the division polynomial $\psi_{q}(x)$ to find the kernel polynomial of degree $(q-1) / 2$ for $E[\mathfrak{q}]$ becomes relatively expensive.
- In SIDH, the ordinary protocol of De Feo, Smith, and Kieffer, or CSIDH, the curves are chosen such that the points of $E[\mathfrak{q}]$ are defined over a small degree extension κ / k, and working with rational points in $E(\kappa)$.
- We propose the use of an effective CM order \mathcal{O}_{K} of class number 1. The kernel polynomial can be computed directly without need for a splitting field for $E[\mathfrak{q}]$, and the computation of a generator isogeny is a one-time precomputation.

MODULAR APPROACH

The use of modular curves for efficient computation of isogenies has an established history (see Elkies)

Modular Curve

The modular curve $\mathrm{X}(1) \simeq \mathbb{P}^{1}$ classifies elliptic curves up to isomorphism, and the function j generates its function field.

The modular polynomial $\Phi_{m}(X, Y)$ defines a correspondence in $\mathrm{X}(1) \times \mathrm{X}(1)$ such that $\Phi_{m}\left(j(E), j\left(E^{\prime}\right)\right)=0$ if and only if there exists a cyclic m-isogeny ϕ from E to E^{\prime}, possibly over some extension field.

Definition

A modular ℓ-isogeny chain of length n over k is a finite sequence $\left(j_{0}, j_{1}, \ldots, j_{n}\right)$ in k such that $\Phi_{\ell}\left(j_{i}, j_{i+1}\right)=0$ for $0 \leq i<n$.
A modular ℓ-ladder of length n and degree q over k is a pair of modular ℓ-isogeny chains

$$
\left(j_{0}, j_{1}, \ldots, j_{n}\right) \text { and }\left(j_{0}^{\prime}, j_{1}^{\prime}, \ldots, j_{n}^{\prime}\right),
$$

such that $\Phi_{q}\left(j_{i}, j_{i}^{\prime}\right)=0$.

OSIDH - nirpoouction

We consider an elliptic curve E_{0} with an effective endomorphism ring (eg. $\left.j_{0}=0,1728\right)$ and a chain of ℓ-isogenies.

OSIDH - nirpoouction

We consider an elliptic curve E_{0} with an effective endomorphism ring (eg. $\left.j_{0}=0,1728\right)$ and a chain of ℓ-isogenies.

- For $\ell=2$ (or 3) a suitable candidate for \mathcal{O}_{K} could be the Gaussian integers $\mathbb{Z}[i]$ or the Eisenstein integers $\mathbb{Z}[\omega]$.

OSIDH - nirpoouction

We consider an elliptic curve E_{0} with an effective endomorphism ring (eg. $\left.j_{0}=0,1728\right)$ and a chain of ℓ-isogenies.

- Horizontal isogenies must be endomorphisms

OSIDH - nirpoouction

We consider an elliptic curve E_{0} with an effective endomorphism ring (eg. $\left.j_{0}=0,1728\right)$ and a chain of ℓ-isogenies.

- We push forward our q-orientation obtaining F_{1}.

OSIDH - nirpoouctoon

We consider an elliptic curve E_{0} with an effective endomorphism ring (eg. $\left.j_{0}=0,1728\right)$ and a chain of ℓ-isogenies.

- We repeat the process for F_{2}.

OSIDH - nirpoouction

We consider an elliptic curve E_{0} with an effective endomorphism ring (eg. $j_{0}=0,1728$) and a chain of ℓ-isogenies.

- And again till F_{n}.

HOW FAR SHOULD WE GO?

In order to have the action of $\mathcal{C \ell}(\mathcal{O})$ cover a large portion of the supersingular elliptic curves, we require $\ell^{n} \sim p$, i.e., $n \sim \log _{\ell}(p)$.

- $\# S S_{\mathcal{O}}^{p r}(p)=h\left(\mathcal{O}_{n}\right)=$ class number of $\mathcal{O}_{n}=\mathbb{Z}+\ell^{n} \mathcal{O}_{K}$.
- Class Number Formula

$$
h\left(\mathbb{Z}+m \mathcal{O}_{K}\right)=\frac{h\left(\mathcal{O}_{K}\right) m}{\left[\mathcal{O}_{K}^{\times}: \mathcal{O}^{\times}\right]} \prod_{p \mid m}\left(1-\left(\frac{\Delta_{K}}{p}\right) \frac{1}{p}\right)
$$

- Units

$$
\mathcal{O}_{K}^{\times}=\left\{\begin{array}{ll}
\{ \pm 1\} & \text { if } \Delta_{K}<-4 \\
\{ \pm 1, \pm i\} & \text { if } \Delta_{K}=-4 \\
\left\{ \pm 1, \pm \omega, \pm \omega^{2}\right\} & \text { if } \Delta_{K}=-3
\end{array} \Rightarrow\left[\mathcal{O}_{K}^{\times}: \mathcal{O}^{\times}\right]= \begin{cases}1 & \text { if } \Delta_{K}<-4 \\
2 & \text { if } \Delta_{K}=-4 \\
3 & \text { if } \Delta_{K}=-3\end{cases}\right.
$$

- Number of Supersingular curves

$$
\# \mathrm{SS}(p)=\left[\frac{p}{12}\right]+\epsilon_{p} \quad \epsilon_{p} \in\{0,1,2\}
$$

Therefore, $h\left(\ell^{n} \mathcal{O}_{K}\right)=\frac{1 \cdot \ell^{n}}{2 \text { or } 3}\left(1-\left(\frac{\Delta_{K}}{\ell}\right) \frac{1}{\ell}\right)=\left[\frac{p}{12}\right]+\epsilon_{p} \Longrightarrow p \sim \ell^{n}$

OSIDH - Intooouction \& modular approch

If we look at modular polynomials $\Phi_{\ell}(X, Y)$ and $\Phi_{q}(X, Y)$ we realize that all we need are the j-invariants:

OSIDH - INTRoduction \& modular approach

If we look at modular polynomials $\Phi_{\ell}(X, Y)$ and $\Phi_{q}(X, Y)$ we realize that all we need are the j-invariants:

Since j_{2} is given (the initial chain is known) and supposing that j_{1}^{\prime} has already been constructed, j_{2}^{\prime} is determined by a system of two equations

HOW MANY STEPS BEFORE TLE IDEALS ACT DIFFERENTLV?

$E_{i}^{\prime} \neq E_{i}^{\prime \prime}$ if and only if $\mathfrak{q}^{2} \cap \mathcal{O}_{i}$ is not principal and the probability that a random ideal in \mathcal{O}_{i} is principal is $1 / h\left(\mathcal{O}_{i}\right)$. In fact, we can do better; we write $\mathcal{O}_{K}=\mathbb{Z}[\omega]$ and we observe that if \mathfrak{q}^{2} was principal, then

$$
q^{2}=\mathrm{N}\left(\mathfrak{q}^{2}\right)=\mathrm{N}\left(a+b \ell^{i} \omega\right)
$$

since it would be generated by an element of $\mathcal{O}_{i}=\mathbb{Z}+\ell^{i} \mathcal{O}_{K}$. Now

$$
\mathrm{N}\left(a+b \ell^{i}\right)=a^{2} \pm a b t \ell^{i}+b^{2} s \ell^{2 i} \quad \text { where } \quad \omega^{2}+t \omega+s=0
$$

Thus, as soon as $\ell^{2 i} \gg q^{2}$, we are guaranteed that \mathfrak{q}^{2} is not principal.

A FIRST NAIVE PROTOCOL

PUBLIC DATA: A chain of ℓ-isogenies $E_{0} \rightarrow E_{1} \rightarrow \ldots \rightarrow E_{n}$ ALICE

BOB

A FIRST NAIVE PROTOCOL

PUBLIC DATA: A chain of ℓ-isogenies $E_{0} \rightarrow E_{1} \rightarrow \ldots \rightarrow E_{n}$
ALICE

A FIRST NAIVE PROTOCOL

PUBLIC DATA: A chain of ℓ-isogenies $E_{0} \rightarrow E_{1} \rightarrow \ldots \rightarrow E_{n}$
ALICE
Choose a primitive \mathcal{O}_{K}-orientation of E_{0}

BOB

Push it forward to depth n

$$
\underbrace{E_{0}=F_{0} \rightarrow F_{1} \rightarrow \ldots \rightarrow F_{n}}_{\phi_{A}} \underbrace{E_{0}=G_{0} \rightarrow G_{1} \rightarrow \ldots \rightarrow G_{n}}_{\phi_{B}}
$$

A FIRST NAIVE PROTOCOL

PUBLIC DATA: A chain of ℓ-isogenies $E_{0} \rightarrow E_{1} \rightarrow \ldots \rightarrow E_{n}$
ALICE
Choose a primitive \mathcal{O}_{K}-orientation of E_{0}

BOB

Push it forward to depth n

Exchange data

$$
\begin{gathered}
\underbrace{E_{0}=F_{0} \rightarrow F_{1} \rightarrow \ldots \rightarrow F_{n}}_{\phi_{A}} \underbrace{E_{0}=G_{0} \rightarrow G_{1} \rightarrow \ldots \rightarrow G_{n}}_{\left\{\phi_{B}\right.} \\
\left\{F_{i}\right\}_{i=1}^{n}
\end{gathered}
$$

A FIRST NAIVE PROTOCOL

PUBLIC DATA: A chain of ℓ-isogenies $E_{0} \rightarrow E_{1} \rightarrow \ldots \rightarrow E_{n}$

ALICE

Choose a primitive \mathcal{O}_{K}-orientation of E_{0}

BOB

Push it forward to depth n

Exchange data
Compute shared secret

$$
\begin{gathered}
\underbrace{E_{0}=F_{0} \rightarrow F_{1} \rightarrow \ldots \rightarrow F_{n}}_{\phi_{A}} \underbrace{E_{0}=G_{0} \rightarrow G_{1} \rightarrow \ldots \rightarrow G_{n}}_{\left\{\phi_{B}\right.} \\
\left\{F_{i}\right\}_{i=1}^{n}
\end{gathered}
$$

Compute $\phi_{A} \cdot\left\{G_{i}\right\} \quad$ Compute $\phi_{B} \cdot\left\{F_{i}\right\}$

A FIRST NAIVE PROTOCOL

PUBLIC DATA: A chain of ℓ-isogenies $E_{0} \rightarrow E_{1} \rightarrow \ldots \rightarrow E_{n}$

ALICE

BOB

Choose a primitive \mathcal{O}_{K}-orientation of E_{0}

Push it forward to depth n

Exchange data
Compute shared secret

$$
\begin{aligned}
\underbrace{E_{0}=F_{0} \rightarrow F_{1} \rightarrow \ldots \rightarrow F_{n}}_{\phi_{A}} \underbrace{E_{0}=G_{0} \rightarrow G_{1} \rightarrow \ldots \rightarrow G_{n}}_{\left\{\phi_{B}\right.} \\
\left\{G_{i}\right\}_{i=1}^{n} \longleftrightarrow \longrightarrow
\end{aligned}
$$

Compute $\phi_{A} \cdot\left\{G_{i}\right\} \quad$ Compute $\phi_{B} \cdot\left\{F_{i}\right\}$
In the end, Alice and Bob will share a new chain $E_{0} \rightarrow H_{1} \rightarrow \ldots \rightarrow H_{n}$

GRAPHIC REPRESENTATION

A FIRST NAIVE PROTOCOL - weakness

In reality, sharing $\left(F_{i}\right)$ and $\left(G_{i}\right)$ reveals too much of the private data.
From the short exact sequence of class groups:

$$
1 \rightarrow \frac{\left(\mathcal{O}_{K} / \ell^{n} \mathcal{O}_{K}\right)^{\times}}{\mathcal{O}_{K}^{\times}\left(\mathbb{Z} / \ell^{n} \mathbb{Z}\right)^{\times}} \rightarrow \mathcal{C} \ell(\mathcal{O}) \rightarrow \mathcal{C} \ell\left(\mathcal{O}_{K}\right) \rightarrow 1
$$

an adversary can compute successive approximations $\left(\bmod \ell^{i}\right)$ to ϕ_{A} and ϕ_{B} modulo ℓ^{n} hence in $\mathcal{C} \ell(\mathcal{O})$.

AN EXAMPLE: compute successive approximations

Take $q=p^{2}=10007^{2} . E_{0}: y^{2}=x^{3}+1$ of j-invariant 0 is supersingular over \mathbb{F}_{q}. We orient E_{0} by $\mathcal{O}_{K}=\mathbb{Z}[\omega] \hookrightarrow \operatorname{End}\left(E_{0}\right)$ where $w^{2}+w+1$.

AN EXAMPLE: computesuccessuve appooxumations

Algorithm. Action of an ideal $\left[\left(q, a+b \ell^{i} w\right)\right] \in \mathcal{C} \ell\left(\mathbb{Z}+\ell^{i} \mathcal{O}_{K}\right)$ lying over q on the set of primitive \mathcal{O}-oriented elliptic curves $\operatorname{SS}_{\mathcal{O}}^{p r}(p)$.

Input: The j-invariants of two elliptic curves E and E^{\prime} over $\mathbb{F}_{p^{2}}$ known to be q-isogenous.
Output: The ideal $[\mathfrak{a}] \in\{[\mathfrak{q}],[\bar{q}]\}$ such that $[\mathfrak{a}] * j(E)=j\left(E^{\prime}\right)$.

1. Compute q-division polynomial $\psi_{q}(x)$.
2. Factor $\psi_{q}(x)$ and find the factor $f(x)$ corresponding to the desired isogeny $\phi: E \rightarrow E^{\prime}$.
3. Pick a root of f, i.e., a q-torsion point P lying in the kernel of ϕ.
4. Set $m \mathcal{O}=\mathfrak{q} \bar{q}=\left(q, a+b \ell^{i} w\right)\left(q, a^{\prime}+b^{\prime} \ell^{i} w\right)$.
5. If $[a] P+[b] \cdot\left[\ell^{i} w\right] P=O_{E}$

Return \mathfrak{q}.
Else
Return $\overline{\mathfrak{q}}$.

AN EXAMPLE: compute successive approximations

The action of $\ell^{i} \omega$ on E_{i} will be given by the composition

$$
\phi_{i-1} \circ \cdots \circ \phi_{2} \circ \phi_{1} \circ \phi_{0} \circ[\omega] \circ \hat{\phi}_{0} \circ \hat{\phi}_{1} \circ \hat{\phi}_{2} \circ \cdots \circ \hat{\phi}_{i-1}
$$

AN EXAMPLE: Compute successive approximations

Observe that this is exactly the definition of orientation by \mathcal{O}_{i} transmitted to E_{i} along the isogeny $E_{0} \rightarrow E_{1} \rightarrow E_{2} \rightarrow \ldots \rightarrow E_{i}$.

THE ALCORTTHM

Computing successive approximations

We are given two sequences $\left\{E_{i}\right\}_{i=0}^{n}$ and $\left\{F_{i}\right\}_{i=0}^{n}$. Suppose that $E_{i}=F_{i}$ for all $i \leq m$; there are l possibilities for F_{m+1}, and we need to find $\beta \in$ End $\left(\mathcal{O}_{K}\right)$ such that

1. $\beta \equiv 1 \bmod \ell^{m}$ so that $\beta_{*} E_{i}=F_{i}=E_{i}$ for all $i \leq m$;
2. $\beta_{*} E_{m+1}=F_{m+1}$;
3. β is smooth with small exponents (n order to determine the action of β modulo ℓ^{m+1} effectively).
Once that we have constructed α such that $\alpha_{*} E_{i}=F_{i}$ for all $m<i \leq k$, then we can substitute 1 with
1'. $\beta \equiv \alpha \bmod \ell^{k}$ so that $\beta_{*} E_{k+1}=F_{k+1}$.

TOWARDS A MORE SECURE OSIDH PROTOCOL

How can we avoid this while still giving the other enough information?
Instead Alice and Bob can send only $F=F_{n}$ and $G=G_{n}$.
Problem Once Alice receives the unoriented curve G_{n} computed by Bob she also needs additional information for each prime \mathfrak{p}_{i} :

In fact, she has no information as to which directions - out of $p_{i}+1$ total p_{i}-isogenies - to take as \mathfrak{p}_{i} and $\overline{\mathfrak{p}}_{i}$.

Solution They share a collection of local isogeny data $\left(F_{n}\left[\mathfrak{q}_{j}\right]\right)$ and $\left(G_{n}\left[\mathfrak{q}_{j}\right]\right)$ which identifies the isogeny directions (out of $q_{i}+1$) for a system of small split primes $\left(\mathfrak{q}_{i}\right)$ in \mathcal{O}_{K}.

OSIDH PROTOCOL

PUBLIC DATA: A chain of ℓ-isogenies $E_{0} \rightarrow E_{1} \rightarrow \ldots \rightarrow E_{n}$ and a set of splitting primes $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{t} \subseteq \mathcal{O} \subseteq$ End $E_{n} \cap K \subseteq \mathcal{O}_{K}$ ALICE BOB

OSIDH PROTOCOL

PUBLIC DATA: A chain of ℓ-isogenies $E_{0} \rightarrow E_{1} \rightarrow \ldots \rightarrow E_{n}$ and a set of splitting primes $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{t} \subseteq \mathcal{O} \subseteq$ End $E_{n} \cap K \subseteq \mathcal{O}_{K}$ ALICE BOB
Choose integers in a bound $[-r, r]$

$$
\left(e_{1}, \ldots, e_{t}\right)
$$

$$
\left(d_{1}, \ldots, d_{t}\right)
$$

OSIDH PROTOCOL

PUBLIC DATA: A chain of ℓ-isogenies $E_{0} \rightarrow E_{1} \rightarrow \ldots \rightarrow E_{n}$ and a set of splitting primes $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{t} \subseteq \mathcal{O} \subseteq$ End $E_{n} \cap K \subseteq \mathcal{O}_{K}$

ALICE
Choose integers in a bound $[-r, r]$ Construct an isogenous curve

$$
\left(e_{1}, \ldots, e_{t}\right)
$$

$$
\left(d_{1}, \ldots, d_{t}\right)
$$

$$
F_{n}=E_{n} / E_{n}\left[\mathfrak{p}_{1}^{e_{1}} \cdots \mathfrak{p}_{t}^{e_{t}}\right] \quad G_{n}=E_{n} / E_{n}\left[\mathfrak{p}_{1}^{d_{1}} \cdots \mathfrak{p}_{t}^{d_{t}}\right]
$$

OSIDH PROTOCOL

PUBLIC DATA: A chain of ℓ-isogenies $E_{0} \rightarrow E_{1} \rightarrow \ldots \rightarrow E_{n}$ and a set of splitting primes $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{t} \subseteq \mathcal{O} \subseteq$ End $E_{n} \cap K \subseteq \mathcal{O}_{K}$

ALICE
Choose integers in a bound $[-r, r]$ Construct an isogenous curve Precompute all directions $\forall i$

$$
\left(e_{1}, \ldots, e_{t}\right)
$$

$$
\left(d_{1}, \ldots, d_{t}\right)
$$

$$
\begin{array}{ll}
F_{n}=E_{n} / E_{n}\left[\mathfrak{p}_{1}^{e_{1}} \cdots \mathfrak{p}_{t}^{e_{t}}\right] & G_{n}=E_{n} / E_{n}\left[\mathfrak{p}_{1}^{d_{1}} \cdots \mathfrak{p}_{t}^{d_{t}}\right] \\
F_{n, i}^{(-r)} \leftarrow F_{n, i}^{(-r+1)} \leftarrow \ldots \leftarrow F_{n, i}^{(1)} \leftarrow F_{n} & G_{n, i}^{(-r)} \leftarrow G_{n, i}^{(-r+1)} \leftarrow \ldots \leftarrow G_{n, i}^{(1)} \leftarrow G_{n}
\end{array}
$$

OSIDH PROTOCOL

PUBLIC DATA: A chain of ℓ-isogenies $E_{0} \rightarrow E_{1} \rightarrow \ldots \rightarrow E_{n}$ and a set of splitting primes $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{t} \subseteq \mathcal{O} \subseteq$ End $E_{n} \cap K \subseteq \mathcal{O}_{K}$

ALICE

Choose integers in a bound $[-r, r]$ Construct an isogenous curve Precompute all directions $\forall i$
... and their conjugates

$$
\left(e_{1}, \ldots, e_{t}\right)
$$

$$
\left(d_{1}, \ldots, d_{t}\right)
$$

$$
F_{n}=E_{n} / E_{n}\left[\mathfrak{p}_{1}^{e_{1}} \cdots \mathfrak{p}_{t}^{e_{t}}\right] \quad G_{n}=E_{n} / E_{n}\left[\mathfrak{p}_{1}^{d_{1}} \cdots \mathfrak{p}_{t}^{d_{t}}\right]
$$

$$
F_{n, i}^{(-r)} \leftarrow F_{n, i}^{(-r+1)} \leftarrow \ldots \leftarrow F_{n, i}^{(1)} \leftarrow F_{n}
$$

$$
G_{n, i}^{(-r)} \leftarrow G_{n, i}^{(-r+1)} \leftarrow \ldots \leftarrow G_{n, i}^{(1)} \leftarrow G_{n}
$$

$$
F_{n} \rightarrow F_{n, i}^{(1)} \rightarrow \ldots \rightarrow F_{n, i}^{(r-1)} \rightarrow F_{n, 1}^{(r)}
$$

$$
G_{n} \rightarrow G_{n, i}^{(1)} \rightarrow \ldots \rightarrow G_{n, i}^{(r-1)} \rightarrow G_{n, 1}^{(r)}
$$

OSIDH PROTOCOL

PUBLIC DATA: A chain of ℓ-isogenies $E_{0} \rightarrow E_{1} \rightarrow \ldots \rightarrow E_{n}$ and a set of splitting primes $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{t} \subseteq \mathcal{O} \subseteq$ End $E_{n} \cap K \subseteq \mathcal{O}_{K}$

ALICE

Choose integers in a bound $[-r, r]$ Construct an isogenous curve Precompute all directions $\forall i$
... and their conjugates
Exchange data

$$
\left(e_{1}, \ldots, e_{t}\right)
$$

$$
F_{n, i}^{(-r)} \leftarrow F_{n, i}^{(-r+1)} \leftarrow \ldots \leftarrow F_{n, i}^{(1)} \leftarrow F_{n}
$$

$$
\left(d_{1}, \ldots, d_{t}\right)
$$

$$
F_{n}=E_{n} / E_{n}\left[\mathfrak{p}_{1}^{e_{1}} \cdots \mathfrak{p}_{t}^{e_{t}}\right] \quad G_{n}=E_{n} / E_{n}\left[\mathfrak{p}_{1}^{d_{1}} \cdots \mathfrak{p}_{t}^{d_{t}}\right]
$$

$$
G_{n, i}^{(-r)} \leftarrow G_{n, i}^{(-r+1)} \leftarrow \ldots \leftarrow G_{n, i}^{(1)} \leftarrow G_{n}
$$

$$
\begin{gathered}
F_{n} \rightarrow F_{n, i}^{(1)} \rightarrow \ldots \rightarrow F_{n, i}^{(r-1)} \rightarrow F_{n, 1}^{(r)} \quad G_{n} \rightarrow G_{n, i}^{(1)} \rightarrow \ldots \rightarrow G_{n, i}^{(r-1)} \rightarrow G_{n, 1}^{(r)} \\
G_{n}+\text { directions }
\end{gathered} F_{n}+\text { directions }
$$

OSIDH PROTOCOL

PUBLIC DATA: A chain of ℓ-isogenies $E_{0} \rightarrow E_{1} \rightarrow \ldots \rightarrow E_{n}$ and a set of splitting primes $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{t} \subseteq \mathcal{O} \subseteq$ End $E_{n} \cap K \subseteq \mathcal{O}_{K}$

ALICE
Choose integers in a bound $[-r, r]$ Construct an isogenous curve Precompute all directions $\forall i$
... and their conjugates
Exchange data

Compute shared data

$$
\left.\begin{array}{cc}
\left(e_{1}, \ldots, e_{t}\right) & \left(d_{1}, \ldots, d_{t}\right) \\
F_{n}=E_{n} / E_{n}\left[\mathfrak{p}_{1}^{e_{1}} \cdots \mathfrak{p}_{t}^{e_{t}}\right] & G_{n}=E_{n} / E_{n}\left[\mathfrak{p}_{1}^{d_{1}} \cdots \mathfrak{p}_{t}^{d_{t}}\right] \\
F_{n, i}^{(-r)} \leftarrow F_{n, i}^{(-r+1)} \leftarrow \ldots \leftarrow F_{n, i}^{(1)} \leftarrow F_{n}
\end{array} \begin{array}{cc}
G_{n, i}^{(-r)} \leftarrow G_{n, i}^{(-r+1)} \leftarrow \ldots \leftarrow G_{n, i}^{(1)} \leftarrow G_{n}
\end{array}\right] \begin{array}{cc}
F_{n} \rightarrow F_{n, i}^{(1)} \rightarrow \ldots \rightarrow F_{n, i}^{(r-1)} \rightarrow F_{n, 1}^{(r)} & G_{n} \rightarrow G_{n, i}^{(1)} \rightarrow \ldots \rightarrow G_{n, i}^{(r-1)} \rightarrow G_{n, 1}^{(r)} \\
G_{n}+\text { directions } & F_{n}+\text { directions } \\
\text { Takes } e_{i} \text { steps in } & \text { Takes } d_{i} \text { steps in } \\
\begin{array}{c}
\mathfrak{p}_{i} \text {-isogeny chain \& push } \\
\text { forward information for } \\
j>i .
\end{array} & \begin{array}{c}
\mathfrak{p}_{i} \text {-isogeny chain \& push } \\
\text { forward information for } \\
j
\end{array} \\
j>i .
\end{array}
$$

BOB

OSIDH PROTOCOL

PUBLIC DATA: A chain of ℓ-isogenies $E_{0} \rightarrow E_{1} \rightarrow \ldots \rightarrow E_{n}$ and a set of splitting primes $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{t} \subseteq \mathcal{O} \subseteq$ End $E_{n} \cap K \subseteq \mathcal{O}_{K}$

ALICE

Choose integers in a bound $[-r, r]$ Construct an isogenous curve Precompute all directions $\forall i$
... and their conjugates
Exchange data

Compute shared data

$$
\begin{array}{cc}
\left(e_{1}, \ldots, e_{t}\right) & \left(d_{1}, \ldots, d_{t}\right) \\
F_{n}=E_{n} / E_{n}\left[\mathfrak{p}_{1}^{e_{1}} \ldots \mathfrak{p}_{t}^{e_{t}}\right]
\end{array} G_{n}=E_{n} / E_{n}\left[\mathfrak{p}_{1}^{d_{1}} \ldots \mathfrak{p}_{t}^{d_{t}}\right] .
$$

BOB

In the end, they share $H_{n}=E_{n} / E_{n}\left[\mathfrak{p}_{1}^{e_{1}+d_{1}} \cdot \ldots \cdot \mathfrak{p}_{t}^{e_{t}+d_{t}}\right]$

OSIDH PROTOCOL - GRAPHIC REPRESENation I

The first step consists of choosing the secret keys; these are represented by a sequence of integers $\left(e_{1}, \ldots, e_{t}\right)$ such that $\left|e_{i}\right| \leq r$. The bound r is taken so that the number $(2 r+1)^{t}$ of curves that can be reached is sufficiently large. This choice of integers enables Alice to compute a new elliptic curve

$$
F_{n}=\frac{E_{n}}{E_{n}\left[\mathfrak{p}_{1}^{e_{1}} \cdots \mathfrak{p}_{t}^{e_{t}}\right]}
$$

by means of constructing the following commutative diagram

OSIDH PROTOCOL - gRaphl Representation II

Once that Alice obtain from Bob the curve G_{n} together with the collection of data encoding the directions, she takes e_{1} steps in the \mathfrak{p}_{1}-isogeny chain and push forward all the \mathfrak{p}_{i}-isogeny chains for $i>1$.

CLASSICAL HARD PROBLEMS

Endomorphism ring problem

Given a supersingular elliptic curve $E / \mathbb{F}_{p^{2}}$ and $\pi=[p]$, determine

1. End (E) as an abstract ring.
2. An explicit endomorphism $\phi \in \operatorname{End}(E)-\mathbb{Z}$.
3. An explicit basis \mathfrak{B}^{0} for $\operatorname{End}^{0}(E)$ over \mathbb{Q}.
4. An explicit basis \mathfrak{B} for $\operatorname{End}(E)$ over \mathbb{Z}.

Endomorphism ring transfer problem

Given an isogeny chain

$$
E_{0} \longrightarrow E_{1} \longrightarrow \ldots \longrightarrow E_{n}
$$

and $\operatorname{End}\left(E_{0}\right)$, determine $\operatorname{End}\left(E_{n}\right)$.

HARD PROBLEMS

Endomorphism Generators Problem

Given a supersingular elliptic curve $E / \mathbb{F}_{p^{2}}, \pi=[p]$, an imaginary quadratic order \mathcal{O} admitting an embedding in $\operatorname{End}(E)$ and a collection of compatible $\left(\mathcal{O}, \mathfrak{q}^{n}\right)$-orientations of E for $(\mathfrak{q}, n) \in S$, determine

1. An explicit endomorphism $\phi \in \mathcal{O} \subseteq \operatorname{End}(E)$
2. A generator ϕ of $\mathcal{O} \subseteq \operatorname{End}(E)$

Suppose $S=\{(\mathfrak{q}, n)\}=\left\{\left(\mathfrak{q}_{1}, n_{1}\right), \ldots,\left(\mathfrak{q}_{t}, n_{t}\right)\right\}$ where $\mathfrak{q}_{1}, \ldots, \mathfrak{q}_{t}$ are pairwise distinct primes such that

$$
\begin{aligned}
{\left[0, \ldots, n_{1}\right] \times \ldots \times\left[0, \ldots, n_{t}\right] } & \longrightarrow \mathcal{C} \ell(\mathcal{O}) \\
\left(e_{1}, \ldots, e_{t}\right) & \longrightarrow\left[\mathfrak{q}_{1}^{e_{1}} \cdot \ldots \cdot \mathfrak{q}_{t}^{e_{t}}\right]
\end{aligned}
$$

is injective. Then, the problem should remain difficult. We can reformulate this in a way that allows $\left(\overline{\mathfrak{q}}_{i}, n_{i}\right) \in S$:

$$
\begin{aligned}
{\left[-n_{1}, \ldots, n_{1}\right] \times \ldots \times\left[-n_{t}, \ldots, n_{t}\right] } & \longrightarrow \mathcal{C} \ell(\mathcal{O}) \\
\left(e_{1}, \ldots, e_{t}\right) & \longrightarrow\left[\mathfrak{q}_{1}^{e_{1}} \cdot \ldots \cdot \mathfrak{q}_{t}^{e_{t}}\right]
\end{aligned}
$$

is injective. If $e_{i}<0$, then $\mathfrak{q}_{i}^{e_{i}}$ corresponds to $\left(\overline{\mathfrak{q}}_{i}\right)^{\left|e_{i}\right|}$.

SECURITY PARAMETERS - FRRS CHOCE

Consider an arbitrary supersingular endomorphism ring $\mathcal{O}_{\mathfrak{B}} \subset \mathfrak{B}$ with discriminant p^{2}. There is a positive definite rank 3 quadratic form

\[

\]

representing discriminants of orders embedding in $\mathcal{O}_{\mathfrak{B}}$.
The general order $\mathcal{O}_{\mathfrak{B}}$ has a reduced basis $1 \wedge \alpha_{1}, 1 \wedge \alpha_{2}, 1 \wedge \alpha_{3}$ satisfying

$$
\left|\operatorname{disc}\left(1 \wedge \alpha_{i}\right)\right|=\Delta_{i} \text { where } \Delta_{i} \sim p^{2 / 3}
$$

(Minkowski bound: $c_{1} p^{2} \leq \Delta_{1} \Delta_{2} \Delta_{3} \leq c_{2} p^{2}$).
In order to hide \mathcal{O}_{n} in $\mathcal{O}_{\mathfrak{B}}$ we impose

$$
\ell^{2 n}\left|\Delta_{K}\right|>c p^{2 / 3} \quad \Rightarrow \quad n \sim \frac{\log _{\ell}(p)}{3}
$$

so that there is no special imaginary quadratic subring in $\mathcal{O}_{\mathfrak{B}}=\operatorname{End}\left(E_{n}\right)$.

OSIDH - vorite s whalipol

We can read this scheme using the terminology introduced at the beginning. After the choice of the secret key, we observe a vortex: Alice (respectively Bob) acts on an isogeny crater (that in the case of $\mathcal{O}_{K}=\mathbb{Z}[\omega]$ or $\mathbb{Z}[i]$ consists of a single points) with the primes $\mathfrak{p}_{1}^{e_{1}} \cdot \ldots \cdot \mathfrak{p}_{t}^{e_{t}}$ (respectively $\mathfrak{q}_{1}^{d_{1}} \cdot \ldots \cdot \mathfrak{q}_{t}^{d_{t}}$).

This action is eventually transmitted along the ℓ-isogeny chain and we get a whirlpool. We can think of the isogeny volcano as rotating under the action of the secret keys and the initial ℓ-isogeny path transforming into the two secret isogeny chains.

CONCLUSIONS

By imposing the data of an orientation by an imaginary quadratic ring \mathcal{O}, we obtain an augmented category of supersingular curves on which the class group $\mathcal{C \ell}(\mathcal{O})$ acts faithfully and transitively.
This idea is already implicit in the CSIDH protocol, in which supersingular curves over \mathbb{F}_{p} are oriented by the Frobenius subring $\mathbb{Z}[\pi] \cong \mathbb{Z}[\sqrt{-p}]$.
In contrast we consider an elliptic curve E_{0} oriented by a CM order \mathcal{O}_{K} of class number one. To obtain a nontrivial group action, we consider ℓ-isogeny chains, on which the class group of an order \mathcal{O} of large index ℓ^{n} in \mathcal{O}_{K} acts.
The map from ℓ-isogeny chains to its terminus forgets the structure of the orientation, and the original curve E_{0}, giving rise to a generic s.s. elliptic curve.
We define a new oriented supersingular isogeny Diffie-Hellman (OSIDH) protocol, which has fewer restrictions on the proportion of supersingular curves covered and on the torsion group structure of the underlying curves.
Moreover, the group action can be carried out effectively solely on the sequences of moduli points (such as j-invariants) on a modular curve, thereby avoiding expensive isogeny computations, and is further amenable to speedup by precomputations of endomorphisms on the base curve E_{0}.

This is a work in progress and we still want to develop the following aspects:

- Security analysis and setting security parameters.
- Implementation and algorithmic optimization.
- Use of canonical liftings.

MERCI POUR VOTRE ATTENTION

