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Introduction Elliptic Curves

ELLIPTIC CURVES

Let 𝑘 be a field of characteristic ≠ 2, 3. An elliptic curve 𝐸 defined over 𝑘 is a

smooth projective curve of genus 1 defined by a Weierstrass equation

𝐸 ∶ 𝑌 2𝑍 = 𝑋3 + 𝑎𝑋𝑍2 + 𝑏𝑍3

where 𝑎, 𝑏 ∈ 𝑘 are such that 4𝑎3 + 27𝑏2 ≠ 0.

In general we work with the affine equation of 𝐸, i.e., 𝐸 ∶ 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏.

We distinguish the point 𝑂 = (0 ∶ 1 ∶ 0) (called point at infinity).

There is a way of adding points on 𝐸 based on Bezout’s theorem (we fix the

point 𝑂 and we define the sum of three co-linear points to be 𝑂). This law
endows the set of 𝑘-rational points with a group structure where 𝑂 plays the role

of identity element. We write 𝐸(𝑘).
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Introduction Elliptic Curves

ISOMORPHISMS OF ELLIPTIC CURVES
An isomorphism of elliptic curves is an invertible morphism of algebraic curves.

They are often referred to as admissible (linear) change of variables.

Isomorphisms

Invertible algebraic maps between elliptic curves are of the form

(𝑥, 𝑦) → (𝑢2𝑥, 𝑢3𝑦) for some 𝑢 ∈ 𝑘̄.

Isomorphisms between elliptic curves are group isomorphisms.

Isomorphism classes are described by an invariant:

j-invariant

The 𝑗-invariant of an elliptic curve 𝐸 ∶ 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 is

𝑗(𝐸) = 1728 4𝑎3

4𝑎3 + 27𝑏2

Two elliptic curves 𝐸, 𝐸′ are isomorphic over 𝑘 if and only if 𝑗(𝐸) = 𝑗(𝐸′).
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Introduction Elliptic Curves

GROUP STRUCTURE

Let 𝐸 be an elliptic curve defined over a field 𝑘 and 𝑚 an integer. The 𝑚-torsion

subgroup of 𝐸 is

𝐸 [𝑚] = {𝑃 ∈ 𝐸 (𝑘̄) | 𝑚𝑃 = 𝑂}

Torsion structure

Let 𝐸 be an elliptic curve defined over an algebraic closed field 𝑘̄ of charac-

teristic 𝑝. If 𝑝 does not divide 𝑚 or 𝑝 = 0, then

𝐸[𝑚] ≃ ℤ
𝑚ℤ

× ℤ
𝑚ℤ

If the 𝑝 > 0, then

𝐸 [𝑝𝑟] ≃ {
ℤ

𝑝𝑟ℤ Ordinary case

{𝑂} Supersingular case
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Introduction Isogenies

ISOGENIES
We want to study relationships between isomorphisms classes of elliptic curves.

Isogenies

An isogeny 𝜙 ∶ 𝐸 → 𝐸′ between two elliptic curves is

▶ A map 𝐸 → 𝐸′ such that 𝜙(𝑃 + 𝑄) = 𝜙(𝑃) + 𝜙(𝑄).
▶ A surjective group morphisms (in the algebraic closure).

▶ A group morphism with finite kernel.

▶ A non-constant algebraic map of projective varieties such that

𝜙(𝑂𝐸) = 𝑂𝐸′ .

▶ An algebraic morphism given by rational maps

𝜙(𝑥, 𝑦) = (𝑓1(𝑥, 𝑦)
𝑔1(𝑥, 𝑦)

, 𝑓2(𝑥, 𝑦)
𝑔2(𝑥, 𝑦)

)

The first example of isogeny is the multiplication by 𝑛 map: [𝑛] ∶ 𝐸 → 𝐸.
If 𝑘 = 𝔽𝑞 we also have the Frobenius morphism 𝜋 ∶ (𝑥, 𝑦) → (𝑥𝑞, 𝑦𝑞).
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Introduction Isogenies

ATTRIBUTES OF ISOGENIES

Let 𝜙 ∶ 𝐸 → 𝐸′ be an isogeny defined over a field 𝑘, char(𝑘) = 𝑝. We define

𝑘(𝐸), 𝑘(𝐸′) to be the function fields of 𝐸 and 𝐸′; by composing 𝜙 with elements

of 𝑘(𝐸′) we obtain a subfield 𝜙∗(𝑘(𝐸′)) of 𝑘(𝐸).
▶ The degree of 𝜙 is defined to be deg 𝜙 = [𝑘 (𝐸) ∶ 𝜙∗𝑘 (𝐸′)].
▶ 𝜙 is said separable, inseparable or purely inseparable if the corresponding

extension of function fields is.

▶ If 𝜙 is separable then deg 𝜙 = #ker 𝜙 while in the purely inseparable case

ker 𝜙 = {𝑂} and deg 𝜙 = 𝑝𝑟 some 𝑟.
▶ Given any isogeny 𝜙 ∶ 𝐸 → 𝐸′ there always exists a unique isogeny

̂𝜙 ∶ 𝐸′ → 𝐸, called the dual isogeny, such that

𝜙 ∘ ̂𝜙 = [deg 𝜙]𝐸′
̂𝜙 ∘ 𝜙 = [deg 𝜙]𝐸
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Introduction Isogenies

THEOREMS ON ISOGENIES

Theorem

For every finite subgroup 𝐺 ⊂ 𝐸 (𝑘̄), there exist a unique (up to isomor-

phism) elliptic curve 𝐸′ = 𝐸/𝐺 and a unique separable isogeny 𝐸 → 𝐸′ of

degree #𝐺. Further, any separable isogeny arises in this way.

Given 𝐺, Velu’s formula enables one to find explicit description for 𝜙.

Theorem (Tate)

Two elliptic curves 𝐸 and 𝐸′ defined over a finite field 𝑘 are isogenous over

𝑘 if and only if #𝐸(𝑘) = #𝐸′(𝑘).

Observe that there exists an algorithm (Schoof - 1985) which, using isogenies,

compute the cardinality of 𝐸 in polynomial time.
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Introduction Endomorphisms

ENDOMORPHISMS

An endomorphism of an elliptic curve 𝐸 is an isogeny form 𝐸 to itself.

Endomorphism ring

The endomorphism ring End(𝐸) = End𝑘̄(𝐸) of an elliptic curve 𝐸/𝑘 is the

set of all endomorphisms of 𝐸 (together with the 0-map) endowed with sum
and multplication.

The endomorphism ring always contains a copy of ℤ in the form of the

multiplication by 𝑚 maps.

If 𝑘 is a finite field we also have the Frobenius endomorphism.

Theorem (Hasse)

Let 𝐸 be an elliptic curve defined over a finite field with 𝑞 elements. Its

Frobenius endomorphism satisfies a quadratic equation 𝜋2 − 𝑡𝜋 + 𝑞 = 0 for
some |𝑡| ≤ 2√𝑞, called the trace of 𝜋.
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Introduction Endomorphisms

THEOREMS ON ENDOMORPHISMS

Let 𝐸 be an elliptic curve defined over a finite field 𝑘. End(𝐸) has dimension
either 2 or 4 as a ℤ-module.

Theorem (Deuring)

Let 𝐸/𝑘 be an elliptic curve over a finite field k of characteristic 𝑝 > 0.
End(𝐸) is isomorphic to one of the following:

▶ An order 𝒪 in a quadratic imaginary field; we say that 𝐸 is ordinary.

▶ A maximal order in a quaternion algebra; we say that 𝐸 is

supersingular.

Isogenous curves are always either both ordinary, or both supersingular.

Theorem (Serre-Tate)

Two elliptic curves 𝐸0 and 𝐸1 defined over a finite field 𝑘 are isogenous if

and only if End(𝐸0) ⊗ℤ ℚ ≃ End(𝐸1) ⊗ℤ ℚ.
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Introduction Isogeny Graphs

ISOGENY GRAPHS
Definition

Given an elliptic curve𝐸 over 𝑘, and a finite set of primes 𝑆, we can associate
an isogeny graph Γ = (𝐸, 𝑆)

▶ whose vertices are elliptic curves isogenous to E over 𝑘̄, and
▶ whose edges are isogenies of degree ℓ ∈ 𝑆.

The vertices are defined up to 𝑘̄-isomorphism (therefore represented by

𝑗-invariants), and the edges from a given vertex are defined up to a

𝑘̄-isomorphism of the codomain.

If 𝑆 = {ℓ}, then we call Γ an ℓ-isogeny graph.

For an elliptic curve 𝐸/𝑘 and prime ℓ ≠ char(𝑘), the full ℓ-torsion subgroup is a

2-dimensional 𝔽ℓ-vector space. Consequently, the set of cyclic subgroups is in

bijection with ℙ1(𝔽ℓ), which in turn are in bijection with the set of ℓ-isogenies
from 𝐸.

Thus the ℓ-isogeny graph of 𝐸 is (ℓ + 1)-regular (as a directed multigraph). In

characteristic 0, if End(𝐸) = ℤ, then this graph is a tree.
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Introduction Isogeny Graphs

ORDINARY ISOGENY GRAPHS: VOLCANOES
Let End(𝐸) = 𝒪 ⊆ 𝐾. The class group Cl(𝒪) (finite abelian group) acts faithfully
and transitively on the set of elliptic curves with endomorphism ring 𝒪:

𝐸 ⟶ 𝐸/𝐸[𝔞] 𝐸[𝔞] = {𝑃 ∈ 𝐸 | 𝛼(𝑃) = 0 ∀𝛼 ∈ 𝔞}

Thus, the CM isogeny graphs can be modelled by an equivalent category of

fractional ideals of 𝐾.

OK

Z [π]

End(E)
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Introduction Isogeny Graphs

STRUCTURE OF VOLCANOES
Let 𝐸 and 𝐸′ be to elliptic curves with endomorphism rings 𝒪 and 𝒪′

respectively and let 𝜙 ∶ 𝐸 → 𝐸′ be an ℓ isogeny.
▶ If 𝒪 = 𝒪′ we say that 𝜙 is horizontal;

▶ If [𝒪′ ∶ 𝒪] = ℓ we say that 𝜙 is ascending;

▶ If [𝒪 ∶ 𝒪′] = ℓ we say that 𝜙 is descending.

Crater

The crater consists of ℎ(𝒪𝐾) = #𝒞ℓ(𝒪𝐾) Elliptic curves. Depending on the
behaviour of ℓ in 𝒪𝐾 we can have one or multiple craters:

(
∆K

`

)
= −1

(
∆K

`

)
= 0

(
∆K

`

)
= +1

The height of the volcano is 𝜈ℓ ([𝒪𝐾 ∶ ℤ[𝜋]]).
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Introduction Isogeny Graphs

SUPERSINGULAR ISOGENY GRAPHS

The supersingular isogeny graphs are remarkable because the vertex sets are

finite : there are (𝑝 + 1)/12 + 𝜖𝑝 curves. Moreover

▶ every supersingular elliptic curve can be defined over 𝔽𝑝2 ;

▶ all ℓ-isogenies are defined over 𝔽𝑝2 ;

▶ every endomorphism of 𝐸 is defined over 𝔽𝑝2 .

The lack of a commutative group acting on the set of

supersingular elliptic curves/𝔽𝑝2 makes the isogeny

graph more complicated.

For this reason, supersingular isogeny graphs have

been proposed for

▶ cryptographic hash functions (Goren–Lauter),

▶ post-quantum SIDH key exchange protocol.
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Introduction Isogeny-based cryptography

SIDH - L. DE FEO & D. JAO, 2011

Supersingular isogeny Diffie-Hellman

▶ Fix two small primes ℓ𝐴 and ℓ𝐵;

▶ Choose a prime 𝑝 such that 𝑝 + 1 = ℓ𝑎
𝐴ℓ𝑏

𝐵𝑓 for a small correction term 𝑓;

▶ Pick a random supersingular elliptic curve 𝐸/𝔽𝑝2 : 𝐸 (𝔽𝑝2) ≃ ( ℤ
(𝑝+1)ℤ )

2

▶ Alice consider 𝐸 [ℓ𝑎
𝐴] = ⟨𝑃𝐴, 𝑄𝐴⟩ while Bob takes 𝐸 [ℓ𝑏

𝐵] = ⟨𝑃𝐵, 𝑄𝐵⟩.
▶ Secret Data: 𝑅𝐴 = 𝑚𝐴𝑃𝐴 + 𝑛𝐴𝑄𝐴 and 𝑅𝐵 = 𝑚𝐵𝑃𝐵 + 𝑛𝐵𝑄𝐵.

▶ Private Key: isogenies 𝜙𝐴 ∶ 𝐸 → 𝐸𝐴 = 𝐸/𝐸⟨𝑅𝐴⟩ and
𝜙𝐵 ∶ 𝐸 → 𝐸𝐵 = 𝐸/𝐸⟨𝑅𝐵⟩.

▶ Shared Data: 𝐸𝐴, 𝜙𝐴(𝑃𝐵), 𝜙𝐴(𝑄𝐵) and 𝐸𝐵, 𝜙𝐵(𝑃𝐴), 𝜙𝐵(𝑄𝐴).
▶ Shared Key: 𝐸/𝐸⟨𝑅𝐴, 𝑅𝐵⟩ = 𝐸𝐵/⟨𝜙𝐵(𝑅𝐴)⟩ = 𝐸𝐴/⟨𝜙𝐴(𝑅𝐵)⟩.
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Introduction Isogeny-based cryptography

CSIDH - W. CASTRYCK & T. LANGE & C. MARTINDALE & L. PANNY & J. RENES, 2018
It is an adaptation of the Couveignes–Rostovtsev–Stolbunov scheme to

supersingular elliptic curves.

Commutative Supersingular isogeny Diffie-Hellman

▶ Fix a prime 𝑝 = 4 ⋅ ℓ1 ⋅ … ⋅ ℓ𝑡 − 1 for small distinct odd primes ℓ𝑖.

▶ The elliptic curve 𝐸0 ∶ 𝑦2 = 𝑥3 + 𝑥/𝔽𝑝 is supersingular and its

endomorphism ring restricted to 𝔽𝑝 is 𝒪 = ℤ [𝜋] (commutative).
▶ All Montgomery curves 𝐸𝐴 ∶ 𝑦2 = 𝑥3 + 𝐴𝑥2 + 𝑥/𝔽𝑝 that are

supersingular, appear in the 𝒞ℓ(𝒪)-orbit of 𝐸0 (easy to store data).

▶ Private Key: it is an 𝑛-tuple of integers (𝑒1, … , 𝑒𝑡) sampled in a range

{−𝑚, … , 𝑚} representing an ideal class [𝔞] = [𝔩𝑒1
1 ⋅ … ⋅ 𝔩𝑒𝑡

𝑡 ] ∈ 𝒞ℓ(𝒪)
where 𝔩𝑖 = (ℓ𝑖, 𝜋 − 1).

▶ Public Key: The Montgomery coefficients 𝐴 of the elliptic curve

𝐸𝐴 = [𝔞] ⋅ 𝐸0 ∶ 𝑦2 = 𝑥3 + 𝐴𝑥2 + 𝑥.
▶ Shared Key: If Alice and Bob have private key (𝔞, 𝐴) and (𝔟, 𝐵) then
they can compute the shared key 𝐸𝐴𝐵 = [𝔞] [𝔟] ⋅ 𝐸0 = [𝔟] [𝔞] ⋅ 𝐸0.
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OSIDH Motivation

MOTIVATING OSIDH
The constraint to 𝔽𝑝-rational isogenies can be interpreted as an orientation of

the supersingular graph by the subring ℤ[𝜋] of End(𝐸) generated by the

Frobenius endomorphism 𝜋.

We introduce a general notion of orienting supersingular elliptic curves and their

isogenies, and use this as the basis to construct a general oriented

supersingular isogeny Diffie-Hellman (OSIDH) protocole.

Motivation

▶ Generalize CSIDH.

▶ Key space of SIDH: in order to have the two key spaces of similar size,

we need to take ℓ𝑒𝐴
𝐴 ≈ ℓ𝑒𝐵

𝐵 ≈ √𝑝. This implies that the space of choices
for the secret key is limited to a fraction of the whole set of supersingular

𝑗-invariants over 𝔽𝑝2 .

▶ A feature shared by SIDH and CSIDH is that the isogenies are

constructed as quotients of rational torsion subgroups. The need for

rational points limits the choice of the prime 𝑝
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OSIDH Orientations

ORIENTATIONS
Let 𝒪 be an order in an imaginary quadratic field. An 𝒪-orientation on a

supersingular elliptic curve 𝐸 is an inclusion 𝜄 ∶ 𝒪 ↪ End(𝐸), and a

𝐾-orientation is an inclusion 𝜄 ∶ 𝐾 ↪ End
0(𝐸) = End(𝐸) ⊗ℤ ℚ. An 𝒪-orientation

is primitive if 𝒪 ≃ End(𝐸) ∩ 𝜄(𝐾).

Theorem

The category of 𝐾-oriented supersingular elliptic curves (𝐸, 𝜄), whose mor-
phisms are isogenies commuting with the 𝐾-orientations, is equivalent to

the category of elliptic curves with CM by 𝐾.

Let 𝜙 ∶ 𝐸 → 𝐹 be an isogeny of degree ℓ. A 𝐾-orientation 𝜄 ∶ 𝐾 ↪ End
0(𝐸)

determines a 𝐾-orientation 𝜙∗(𝜄) ∶ 𝐾 ↪ End
0(𝐹) on 𝐹, defined by

𝜙∗(𝜄)(𝛼) = 1
ℓ

𝜙 ∘ 𝜄(𝛼) ∘ ̂𝜙.

Conversely, given 𝐾-oriented elliptic curves (𝐸, 𝜄𝐸) and (𝐹 , 𝜄𝐹) we say that an
isogeny 𝜙 ∶ 𝐸 → 𝐹 is 𝐾-oriented if 𝜙∗(𝜄𝐸) = 𝜄𝐹, i.e., if the orientation on 𝐹 is

induced by 𝜙.
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OSIDH Orientations

ORIENTED ELLIPTIC CURVES AND VOLCANOES

As we have seen, one feature of the ℓ-isogeny graphs of CM elliptic curves is

that in each component, depending on whether ℓ is split, inert, or ramified in 𝐾,

there is a cycle of vertices, unique vertex, or adjacent pair of vertices which have

ℓ-maximal endomorphism ring.

Chains of ℓ-isogenies leading away from these ℓ-maximal vertices have
successively (and strictly) smaller endomorphism rings, by a power of ℓ.

This lets us define the depth of a CM elliptic curve 𝐸 (i.e. vertex) in the ℓ-isogeny
graph as the valuation of the index [𝒪𝐾 ∶ End(𝐸)] at ℓ, which measures the
distance to an ℓ-maximal vertex.

Consequently, we obtain a notion of depth at ℓ in the 𝐾-oriented supersingular

ℓ-isogeny graph.

We also recover the notion of horizontal, ascending and descending isogenies.
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OSIDH Action of the class group

CLASS GROUP ACTION
▶ SS(𝑝) = {supersingular elliptic curves over 𝔽𝑝 up to isomorphism}.
▶ SS𝒪(𝑝) = {𝒪-oriented s.s. elliptic curves over 𝔽𝑝 up to 𝐾-isomorphism}.
▶ SS

𝑝𝑟
𝒪 (𝑝) =subset of primitive 𝒪-oriented curves.

The set SS𝒪(𝑝) admits a transitive group action:

𝒞ℓ(𝒪) × SS𝒪(𝑝) SS𝒪(𝑝) ([𝔞] , 𝐸) [𝔞] ⋅ 𝐸 = 𝐸/𝐸[𝔞]

Proposition

The class group 𝒞ℓ(𝒪) acts faithfully and transitively on the set of 𝒪-
isomorphism classes of primitive 𝒪-oriented elliptic curves.

In particular, for fixed primitive 𝒪-oriented 𝐸, we obtain a bijection of sets:

𝒞ℓ(𝒪) SS
𝑝𝑟
𝒪 (𝑝) [𝔞] [𝔞] ⋅ 𝐸

For any ideal class [𝔞] and generating set {𝔮1, … , 𝔮𝑟} of small primes, coprime to

[𝒪𝐾 ∶ 𝒪], we can find an identity [𝔞] = [𝔮𝑒1
1 ⋅ … ⋅ 𝔮𝑒𝑟𝑟 ], in order to compute the

action via a sequence of low-degree isogenies.
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OSIDH Action of the class group

VORTEX
We define a vortex to be the ℓ-isogeny subgraph whose vertices are
isomorphism classes of 𝒪-oriented elliptic curves with ℓ-maximal endomorphism
ring, equipped with an action of 𝒞ℓ(𝒪).

C`(O)

Instead of considering the union of different isogeny graphs, we focus on one

single crater and we think of all the other primes as acting on it: the resulting

object is a single isogeny circle rotating under the action of 𝒞ℓ(𝒪).
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OSIDH Action of the class group

WHIRLPOOL
The action of 𝒞ℓ(𝒪) extends to the union ⋃𝑖 𝑆𝑆𝒪𝑖

(𝑝) over all superorders 𝒪𝑖
containing 𝒪 via the surjections 𝒞ℓ(𝒪) → 𝒞ℓ(𝒪𝑖).

We define a whirlpool to be a complete isogeny volcano acted on by the class

group. We would like to think at isogeny graphs as moving objects.
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OSIDH Action of the class group

WHIRLPOOL
Actually, we would like to take the ℓ-isogeny graph on the full 𝒞ℓ(𝒪𝐾)-orbit. This
might be composed of several ℓ-isogeny orbits (craters), although the class
group is transitive.

Leonardo COLÒ (I2M-AMU) OSIDH 21 June 2019 21 / 47



OSIDH Action of the class group

WHIRLPOOL: AN EXAMPLE
The set of multiple ℓ-volcanoes is called ℓ-cordillera.

Example. 𝑝 = 353, ℓ = 2, elliptic curves with 344 𝔽353-rational points.

160 270

182 253 66 236

230 298

197 304 264 330

A whirlpool is the union of the two, shuffled by the class group of ℤ[2
√

−82].

160 270

182 253 66 236

230 298

197 304 264 330
264

236

66

330

304

182

253

197

7
13
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OSIDH Isogeny chains and ladders

ISOGENY CHAINS

Definition

An ℓ-isogeny chain of length 𝑛 from 𝐸0 to 𝐸 is a sequence of isogenies of

degree ℓ:
𝐸0

𝜙0
⟶ 𝐸1

𝜙1
⟶ 𝐸2

𝜙2
⟶ …

𝜙𝑛−1
⟶ 𝐸𝑛 = 𝐸.

The ℓ-isogeny chain is without backtracking if ker (𝜙𝑖+1 ∘ 𝜙𝑖) ≠ 𝐸𝑖[ℓ], ∀𝑖.
The isogeny chain is descending (or ascending, or horizontal) if each 𝜙𝑖 is

descending (or ascending, or horizontal, respectively).

The dual isogeny of 𝜙𝑖 is the only isogeny 𝜙𝑖+1 satisfying ker (𝜙𝑖+1 ∘ 𝜙𝑖) = 𝐸𝑖[ℓ].
Thus, an isogeny chain is without backtracking if and only if the composition of

two consecutive isogenies is cyclic.

Lemma

The composition of the isogenies in an ℓ-isogeny chain is cyclic if and only

if the ℓ-isogeny chain is without backtracking.
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OSIDH Isogeny chains and ladders

PUSHING ISOGENIES ALONG A CHAIN
Suppose that (𝐸𝑖, 𝜙𝑖) is an ℓ-isogeny chain, with 𝐸0 equipped with an

𝒪𝐾-orientation 𝜄0 ∶ 𝒪𝐾 → End(𝐸0).

For each 𝑖, 𝜄𝑖 ∶ 𝐾 → End
0(𝐸𝑖) is the induced 𝐾-orientation on 𝐸𝑖. Write

𝒪𝑖 = End(𝐸𝑖) ∩ 𝜄𝑖(𝐾) with 𝒪0 = 𝒪𝐾.

If 𝔮 is a split prime in 𝒪𝐾 over 𝑞 ≠ ℓ, 𝑝, then the isogeny

𝜓0 ∶ 𝐸0 → 𝐹0 = 𝐸0/𝐸0 [𝔮]

can be extended to the ℓ-isogeny chain by pushing forward 𝐶0 = 𝐸0 [𝔮]:

𝐶0 = 𝐸0 [𝔮] , 𝐶1 = 𝜙0(𝐶0), … , 𝐶𝑛 = 𝜙𝑛−1(𝐶𝑛−1)

and defining 𝐹𝑖 = 𝐸𝑖/𝐶𝑖.

Ci−1 ⊆ Ei−1 Ei ⊇ Ci

Ei−1/Ci−1 = Fi−1 Fi = Ei/Ci

ψi−1 ψiq

φi−1

q

`

`
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OSIDH Isogeny chains and ladders

LADDERS
Definition

An ℓ-ladder of length 𝑛 and degree 𝑞 is a commutative diagram of ℓ-isogeny
chains (𝐸𝑖, 𝜙𝑖), (𝐹𝑖, 𝜙′

𝑖) of length 𝑛 connected by 𝑞-isogenies 𝜓𝑖 ∶ 𝐸𝑖 → 𝐹𝑖

E0 E1 E2 En

F0 F1 F2 Fn

φ0 φ1 φ2 φn−1

φ′0 φ′1 φ′2 φ′n−1

ψ0 ψ1 ψ2 ψn

We also refer to an ℓ-ladder of degree 𝑞 as a 𝑞-isogeny of ℓ-isogeny chains.

We say that an ℓ-ladder is ascending (or descending, or horizontal) if the
ℓ-isogeny chain (𝐸𝑖, 𝜙𝑖) is ascending (or descending, or horizontal, respectively).

We say that the ℓ-ladder is level if 𝜓0 is a horizontal 𝑞-isogeny. If the ℓ-ladder is
descending (or ascending), then we refer to the length of the ladder as its depth

(or, respectively, as its height).
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OSIDH Modular isogenies

EFFECTIVE ENDOMORPHISM RINGS AND ISOGENIES
We say that a subring of End(𝐸) is effective if we have explicit polynomials or
rational functions which represent its generators.

Examples. ℤ in End(𝐸) is effective. Effective imaginary quadratic subrings
𝒪 ⊂ End(𝐸), are the subrings 𝒪 = ℤ[𝜋] generated by Frobenius

In the Couveignes-Rostovtsev-Stolbunov constructions, or in the CSIDH

protocol, one works with 𝒪 = ℤ[𝜋].
▶ For large finite fields, the class group of 𝒪 is large and the primes 𝔮 in 𝒪
have no small generators.

Factoring the division polynomial 𝜓𝑞(𝑥) to find the kernel polynomial of

degree (𝑞 − 1)/2 for 𝐸[𝔮] becomes relatively expensive.
▶ In SIDH, the ordinary protocol of De Feo, Smith, and Kieffer, or CSIDH, the

curves are chosen such that the points of 𝐸[𝔮] are defined over a small

degree extension 𝜅/𝑘, and working with rational points in 𝐸(𝜅).
▶ We propose the use of an effective CM order 𝒪𝐾 of class number 1.
The kernel polynomial can be computed directly without need for a splitting

field for 𝐸[𝔮], and the computation of a generator isogeny is a one-time

precomputation.
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OSIDH Modular isogenies

MODULAR APPROACH
The use of modular curves for efficient computation of isogenies has an

established history (see Elkies)

Modular Curve

The modular curve X(1) ≃ ℙ1 classifies elliptic curves up to isomorphism,

and the function 𝑗 generates its function field.

The modular polynomial Φ𝑚(𝑋, 𝑌 ) defines a correspondence in X(1) × X(1)
such that Φ𝑚(𝑗(𝐸), 𝑗(𝐸′)) = 0 if and only if there exists a cyclic 𝑚-isogeny 𝜙
from 𝐸 to 𝐸′, possibly over some extension field.

Definition

A modular ℓ-isogeny chain of length 𝑛 over 𝑘 is a finite sequence

(𝑗0, 𝑗1, … , 𝑗𝑛) in 𝑘 such that Φℓ(𝑗𝑖, 𝑗𝑖+1) = 0 for 0 ≤ 𝑖 < 𝑛.
A modular ℓ-ladder of length 𝑛 and degree 𝑞 over 𝑘 is a pair of modular

ℓ-isogeny chains

(𝑗0, 𝑗1, … , 𝑗𝑛) and (𝑗′
0, 𝑗′

1, … , 𝑗′
𝑛),

such that Φ𝑞(𝑗𝑖, 𝑗′
𝑖) = 0.
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OSIDH OSIDH - Introduction

OSIDH - INTRODUCTION

We consider an elliptic curve 𝐸0 with an effective endomorphism ring (eg.

𝑗0 = 0, 1728) and a chain of ℓ-isogenies.

𝐸0

𝐸1

𝐸2

𝐸𝑛

ℓ

ℓ

ℓ

ℓ
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OSIDH - INTRODUCTION

We consider an elliptic curve 𝐸0 with an effective endomorphism ring (eg.

𝑗0 = 0, 1728) and a chain of ℓ-isogenies.
▶ For ℓ = 2 (or 3) a suitable candidate for 𝒪𝐾 could be the Gaussian integers

ℤ[𝑖] or the Eisenstein integers ℤ[𝜔].

𝐸0

𝐸1

𝐸2

𝐸𝑛

ℓ

ℓ

ℓ

ℓ

𝒪𝐾
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OSIDH OSIDH - Introduction

OSIDH - INTRODUCTION
We consider an elliptic curve 𝐸0 with an effective endomorphism ring (eg.

𝑗0 = 0, 1728) and a chain of ℓ-isogenies.
▶ Horizontal isogenies must be endomorphisms

𝐸0

𝐸1

𝐸2

𝐸𝑛

ℓ

ℓ

ℓ

ℓ

𝒪𝐾

𝐹0

𝑞
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OSIDH OSIDH - Introduction

OSIDH - INTRODUCTION
We consider an elliptic curve 𝐸0 with an effective endomorphism ring (eg.

𝑗0 = 0, 1728) and a chain of ℓ-isogenies.
▶ We push forward our 𝑞-orientation obtaining 𝐹1.

𝐸0

𝐸1

𝐸2

𝐸𝑛

ℓ

ℓ

ℓ

ℓ

𝒪𝐾

𝐹0

𝑞 𝐹1
ℓ

𝑞
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OSIDH OSIDH - Introduction

OSIDH - INTRODUCTION
We consider an elliptic curve 𝐸0 with an effective endomorphism ring (eg.

𝑗0 = 0, 1728) and a chain of ℓ-isogenies.
▶ We repeat the process for 𝐹2.

𝐸0

𝐸1

𝐸2

𝐸𝑛

ℓ

ℓ

ℓ

ℓ

𝒪𝐾

𝐹0

𝑞 𝐹1
ℓ

𝑞 𝐹2
ℓ

𝑞
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OSIDH OSIDH - Introduction

OSIDH - INTRODUCTION
We consider an elliptic curve 𝐸0 with an effective endomorphism ring (eg.

𝑗0 = 0, 1728) and a chain of ℓ-isogenies.
▶ And again till 𝐹𝑛.

𝐸0

𝐸1

𝐸2

𝐸𝑛

ℓ

ℓ

ℓ

ℓ

𝒪𝐾

𝐹0

𝑞 𝐹1
ℓ

𝑞 𝐹2
ℓ

𝑞

𝐹𝑛

ℓ

ℓ

𝑞
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OSIDH OSIDH - Introduction

HOW FAR SHOULD WE GO?
In order to have the action of 𝒞ℓ(𝒪) cover a large portion of the supersingular
elliptic curves, we require ℓ𝑛 ∼ 𝑝, i.e., 𝑛 ∼ logℓ(𝑝).

▶ #𝑆𝑆𝑝𝑟
𝒪 (𝑝) = ℎ(𝒪𝑛) =class number of 𝒪𝑛 = ℤ + ℓ𝑛𝒪𝐾.

▶ Class Number Formula

ℎ(ℤ + 𝑚𝒪𝐾) = ℎ(𝒪𝐾)𝑚
[𝒪×

𝐾 ∶ 𝒪×]
∏
𝑝∣𝑚

(1 − (Δ𝐾
𝑝

) 1
𝑝

)

▶ Units

𝒪×
𝐾 =

⎧{
⎨{⎩

{±1} if Δ𝐾 < −4
{±1, ±𝑖} if Δ𝐾 = −4
{±1, ±𝜔, ±𝜔2} if Δ𝐾 = −3

⇒ [𝒪×
𝐾 ∶ 𝒪×] =

⎧{
⎨{⎩

1 if Δ𝐾 < −4
2 if Δ𝐾 = −4
3 if Δ𝐾 = −3

▶ Number of Supersingular curves

#SS(𝑝) = [ 𝑝
12

] + 𝜖𝑝 𝜖𝑝 ∈ {0, 1, 2}

Therefore, ℎ(ℓ𝑛𝒪𝐾) = 1 ⋅ ℓ𝑛

2 or 3
(1 − (Δ𝐾

ℓ
) 1

ℓ
) = [ 𝑝

12
] + 𝜖𝑝 ⟹ 𝑝 ∼ ℓ𝑛
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OSIDH OSIDH - Introduction

OSIDH - INTRODUCTION & MODULAR APPROACH

If we look at modular polynomials Φℓ(𝑋, 𝑌 ) and Φ𝑞(𝑋, 𝑌 ) we realize that all we
need are the 𝑗-invariants:

𝑗0

𝑗1

𝑗𝑛

ℓ

ℓ

ℓ

ℓ

𝒪𝐾

𝑗′
0

𝑞 𝑗′
1ℓ

𝑞
ℓ

𝑞

𝑗′
𝑛

ℓ

ℓ

𝑞

⎧{
⎨{⎩

Φℓ(𝑗1, 𝑗2) = 0
Φℓ(𝑗′

1, 𝑌 ) = 0
Φ𝑞(𝑗2, 𝑌 ) = 0
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If we look at modular polynomials Φℓ(𝑋, 𝑌 ) and Φ𝑞(𝑋, 𝑌 ) we realize that all we
need are the 𝑗-invariants:

𝑗0

𝑗1

𝑗𝑛

ℓ

ℓ

ℓ

ℓ

𝒪𝐾

𝑗′
0

𝑞 𝑗′
1ℓ

𝑞
ℓ

𝑞

𝑗′
𝑛

ℓ

ℓ

𝑞

⎧{
⎨{⎩

Φℓ(𝑗1, 𝑗2) = 0
Φℓ(𝑗′

1, 𝑌 ) = 0
Φ𝑞(𝑗2, 𝑌 ) = 0

Since 𝑗2 is given (the initial chain is known) and supposing that 𝑗′
1 has already

been constructed, 𝑗′
2 is determined by a system of two equations
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OSIDH OSIDH - Introduction

HOW MANY STEPS BEFORE THE IDEALS ACT DIFFERENTLY?

E0 E0
E0

E′′
1 E′

1
E1

qq

q̄

q2

𝐸′
𝑖 ≠ 𝐸″

𝑖 if and only if 𝔮2 ∩ 𝒪𝑖 is not principal and the probability that a random

ideal in 𝒪𝑖 is principal is 1/ℎ(𝒪𝑖). In fact, we can do better; we write 𝒪𝐾 = ℤ[𝜔]
and we observe that if 𝔮2 was principal, then

𝑞2 = N(𝔮2) = N(𝑎 + 𝑏ℓ𝑖𝜔)

since it would be generated by an element of 𝒪𝑖 = ℤ + ℓ𝑖𝒪𝐾. Now

N(𝑎 + 𝑏ℓ𝑖) = 𝑎2 ± 𝑎𝑏𝑡ℓ𝑖 + 𝑏2𝑠ℓ2𝑖 where 𝜔2 + 𝑡𝜔 + 𝑠 = 0

Thus, as soon as ℓ2𝑖 >> 𝑞2, we are guaranteed that 𝔮2 is not principal.
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OSIDH A first attempt

A FIRST NAIVE PROTOCOL

PUBLIC DATA: A chain of ℓ-isogenies 𝐸0 → 𝐸1 → … → 𝐸𝑛
ALICE BOB

Choose a primitive

𝒪𝐾-orientation of

𝐸0

𝐸0

𝐹0

𝐸0

𝐺0

Push it forward to

depth 𝑛 𝐸0 = 𝐹0 → 𝐹1 → … → 𝐹𝑛⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝜙𝐴

𝐸0 = 𝐺0 → 𝐺1 → … → 𝐺𝑛⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝜙𝐵

Exchange data

{𝐺𝑖}𝑛
𝑖=1 {𝐹𝑖}𝑛

𝑖=1
Compute shared

secret
Compute 𝜙𝐴 ⋅ {𝐺𝑖} Compute 𝜙𝐵 ⋅ {𝐹𝑖}

In the end, Alice and Bob will share a new chain 𝐸0 → 𝐻1 → … → 𝐻𝑛
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OSIDH A first attempt

GRAPHIC REPRESENTATION

𝐸0

𝐸1

𝐸2

𝐸3

𝐸𝑛

𝐸′
1

𝐸0

𝐸1

𝐸2

𝐸𝑛

𝐸″
1

𝐹𝑛
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GRAPHIC REPRESENTATION
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OSIDH A first attempt

A FIRST NAIVE PROTOCOL - WEAKNESS
In reality, sharing (𝐹𝑖) and (𝐺𝑖) reveals too much of the private data.

From the short exact sequence of class groups:

1 → (𝒪𝐾/ℓ𝑛𝒪𝐾)×

𝒪×
𝐾 (ℤ/ℓ𝑛ℤ)× → 𝒞ℓ(𝒪) → 𝒞ℓ(𝒪𝐾) → 1

an adversary can compute successive approximations (mod ℓ𝑖) to 𝜙𝐴 and 𝜙𝐵
modulo ℓ𝑛 hence in 𝒞ℓ(𝒪).
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OSIDH Computing isogenies

AN EXAMPLE: COMPUTE SUCCESSIVE APPROXIMATIONS
Take 𝑞 = 𝑝2 = 100072. 𝐸0 ∶ 𝑦2 = 𝑥3 + 1 of 𝑗-invariant 0 is supersingular over 𝔽𝑞.

We orient 𝐸0 by 𝒪𝐾 = ℤ[𝜔] ↪ End(𝐸0) where 𝑤2 + 𝑤 + 1.
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OSIDH Computing isogenies

AN EXAMPLE: COMPUTE SUCCESSIVE APPROXIMATIONS
Algorithm. Action of an ideal [(𝑞, 𝑎 + 𝑏ℓ𝑖𝑤)] ∈ 𝒞ℓ(ℤ + ℓ𝑖𝒪𝐾) lying over 𝑞 on the
set of primitive 𝒪-oriented elliptic curves SS

𝑝𝑟
𝒪 (𝑝).

Input: The 𝑗-invariants of two elliptic curves 𝐸 and 𝐸′ over 𝔽𝑝2 known to be

𝑞-isogenous.
Output: The ideal [𝔞] ∈ {[𝔮] , [𝔮]} such that [𝔞] ∗ 𝑗(𝐸) = 𝑗(𝐸′).

1. Compute 𝑞-division polynomial 𝜓𝑞(𝑥).
2. Factor 𝜓𝑞(𝑥) and find the factor 𝑓(𝑥) corresponding to the desired isogeny

𝜙 ∶ 𝐸 → 𝐸′.

3. Pick a root of 𝑓, i.e., a 𝑞-torsion point 𝑃 lying in the kernel of 𝜙.
4. Set 𝑚𝒪 = 𝔮𝔮 = (𝑞, 𝑎 + 𝑏ℓ𝑖𝑤)(𝑞, 𝑎′ + 𝑏′ℓ𝑖𝑤).
5. If [𝑎] 𝑃 + [𝑏] ⋅ [ℓ𝑖𝑤] 𝑃 = 𝑂𝐸

Return 𝔮.
Else

Return 𝔮.
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OSIDH Computing isogenies

AN EXAMPLE: COMPUTE SUCCESSIVE APPROXIMATIONS
The action of ℓ𝑖𝜔 on 𝐸𝑖 will be given by the composition

𝜙𝑖−1 ∘ ⋯ ∘ 𝜙2 ∘ 𝜙1 ∘ 𝜙0 ∘ [𝜔] ∘ ̂𝜙0 ∘ ̂𝜙1 ∘ ̂𝜙2 ∘ ⋯ ∘ ̂𝜙𝑖−1
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OSIDH Computing isogenies

AN EXAMPLE: COMPUTE SUCCESSIVE APPROXIMATIONS
Observe that this is exactly the definition of orientation by 𝒪𝑖 transmitted to 𝐸𝑖
along the isogeny 𝐸0 → 𝐸1 → 𝐸2 → … → 𝐸𝑖.
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OSIDH Computing isogenies

THE ALGORITHM

Computing successive approximations

We are given two sequences {𝐸𝑖}𝑛
𝑖=0 and {𝐹𝑖}𝑛

𝑖=0. Suppose that 𝐸𝑖 = 𝐹𝑖
for all 𝑖 ≤ 𝑚; there are 𝑙 possibilities for 𝐹𝑚+1, and we need to find 𝛽 ∈
End(𝒪𝐾) such that
1. 𝛽 ≡ 1 mod ℓ𝑚 so that 𝛽∗𝐸𝑖 = 𝐹𝑖 = 𝐸𝑖 for all 𝑖 ≤ 𝑚;

2. 𝛽∗𝐸𝑚+1 = 𝐹𝑚+1;

3. 𝛽 is smooth with small exponents (n order to determine the action of 𝛽
modulo ℓ𝑚+1 effectively).

Once that we have constructed 𝛼 such that 𝛼∗𝐸𝑖 = 𝐹𝑖 for all 𝑚 < 𝑖 ≤ 𝑘,
then we can substitute 1 with

1'. 𝛽 ≡ 𝛼 mod ℓ𝑘 so that 𝛽∗𝐸𝑘+1 = 𝐹𝑘+1.
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OSIDH The protocol

TOWARDS A MORE SECURE OSIDH PROTOCOL

How can we avoid this while still giving the other enough information?

Instead Alice and Bob can send only 𝐹 = 𝐹𝑛 and 𝐺 = 𝐺𝑛.

Problem Once Alice receives the unoriented curve 𝐺𝑛 computed by Bob she

also needs additional information for each prime 𝔭𝑖:

Bob’s curve

𝐺𝑛

Horizontal 𝑝𝑖-isogeny
with kernel 𝐺𝑛[𝔭̄𝑖]

Horizontal 𝑝𝑖-isogeny
with kernel 𝐺𝑛[𝔭𝑖]

In fact, she has no information as to which directions — out of 𝑝𝑖 + 1 total

𝑝𝑖-isogenies — to take as 𝔭𝑖 and 𝔭̄𝑖.

Solution They share a collection of local isogeny data (𝐹𝑛[𝔮𝑗]) and (𝐺𝑛[𝔮𝑗])
which identifies the isogeny directions (out of 𝑞𝑖 + 1) for a system of small split

primes (𝔮𝑖) in 𝒪𝐾.
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OSIDH The protocol

OSIDH PROTOCOL
PUBLIC DATA: A chain of ℓ-isogenies 𝐸0 → 𝐸1 → … → 𝐸𝑛 and a set of

splitting primes 𝔭1, … , 𝔭𝑡 ⊆ 𝒪 ⊆ End𝐸𝑛 ∩ 𝐾 ⊆ 𝒪𝐾
ALICE BOB

Choose integers

in a bound [−𝑟, 𝑟] (𝑒1, … , 𝑒𝑡) (𝑑1, … , 𝑑𝑡)

Construct an

isogenous curve
𝐹𝑛 = 𝐸𝑛/𝐸𝑛 [𝔭𝑒1

1 ⋯ 𝔭𝑒𝑡
𝑡 ] 𝐺𝑛 = 𝐸𝑛/𝐸𝑛 [𝔭𝑑1

1 ⋯ 𝔭𝑑𝑡
𝑡 ]

Precompute all

directions ∀𝑖 𝐹 (−𝑟)
𝑛,𝑖 ←𝐹 (−𝑟+1)

𝑛,𝑖 ←…←𝐹 (1)
𝑛,𝑖←𝐹𝑛 𝐺(−𝑟)

𝑛,𝑖 ←𝐺(−𝑟+1)
𝑛,𝑖 ←…←𝐺(1)

𝑛,𝑖←𝐺𝑛

... and their

conjugates
𝐹𝑛→𝐹 (1)

𝑛,𝑖→…→𝐹 (𝑟−1)
𝑛,𝑖 →𝐹 (𝑟)

𝑛,1 𝐺𝑛→𝐺(1)
𝑛,𝑖→…→𝐺(𝑟−1)

𝑛,𝑖 →𝐺(𝑟)
𝑛,1

Exchange data

𝐺𝑛+directions 𝐹𝑛+directions

Compute shared

data

Takes 𝑒𝑖 steps in

𝔭𝑖-isogeny chain & push

forward information for

𝑗 > 𝑖.

Takes 𝑑𝑖 steps in

𝔭𝑖-isogeny chain & push

forward information for

𝑗 > 𝑖.

In the end, they share 𝐻𝑛 = 𝐸𝑛/𝐸𝑛 [𝔭𝑒1+𝑑1
1 ⋅ … ⋅ 𝔭𝑒𝑡+𝑑𝑡

𝑡 ]
∫

∫
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splitting primes 𝔭1, … , 𝔭𝑡 ⊆ 𝒪 ⊆ End𝐸𝑛 ∩ 𝐾 ⊆ 𝒪𝐾
ALICE BOB

Choose integers

in a bound [−𝑟, 𝑟] (𝑒1, … , 𝑒𝑡) (𝑑1, … , 𝑑𝑡)

Construct an

isogenous curve
𝐹𝑛 = 𝐸𝑛/𝐸𝑛 [𝔭𝑒1

1 ⋯ 𝔭𝑒𝑡
𝑡 ] 𝐺𝑛 = 𝐸𝑛/𝐸𝑛 [𝔭𝑑1

1 ⋯ 𝔭𝑑𝑡
𝑡 ]

Precompute all

directions ∀𝑖 𝐹 (−𝑟)
𝑛,𝑖 ←𝐹 (−𝑟+1)

𝑛,𝑖 ←…←𝐹 (1)
𝑛,𝑖←𝐹𝑛 𝐺(−𝑟)

𝑛,𝑖 ←𝐺(−𝑟+1)
𝑛,𝑖 ←…←𝐺(1)

𝑛,𝑖←𝐺𝑛

... and their

conjugates
𝐹𝑛→𝐹 (1)

𝑛,𝑖→…→𝐹 (𝑟−1)
𝑛,𝑖 →𝐹 (𝑟)

𝑛,1 𝐺𝑛→𝐺(1)
𝑛,𝑖→…→𝐺(𝑟−1)

𝑛,𝑖 →𝐺(𝑟)
𝑛,1

Exchange data

𝐺𝑛+directions 𝐹𝑛+directions

Compute shared

data

Takes 𝑒𝑖 steps in

𝔭𝑖-isogeny chain & push

forward information for

𝑗 > 𝑖.

Takes 𝑑𝑖 steps in

𝔭𝑖-isogeny chain & push

forward information for

𝑗 > 𝑖.

In the end, they share 𝐻𝑛 = 𝐸𝑛/𝐸𝑛 [𝔭𝑒1+𝑑1
1 ⋅ … ⋅ 𝔭𝑒𝑡+𝑑𝑡

𝑡 ]
∫

∫
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OSIDH PROTOCOL - GRAPHIC REPRESENTATION I
The first step consists of choosing the secret keys; these are represented by a

sequence of integers (𝑒1, … , 𝑒𝑡) such that |𝑒𝑖| ≤ 𝑟. The bound 𝑟 is taken so that
the number (2𝑟 + 1)𝑡 of curves that can be reached is sufficiently large. This

choice of integers enables Alice to compute a new elliptic curve

𝐹𝑛 = 𝐸𝑛
𝐸𝑛[𝔭𝑒1

1 ⋯ 𝔭𝑒𝑡
𝑡 ]

by means of constructing the following commutative diagram

E0

E1

En

E0
E0[p1]

=

E0

F
(1)
n

E0

E0[p
e1
1 ]

=
E0

F
(e1)
n

E0

E0[p
e1
1 p2]

=

E0

F
(e1,1)
n

E0

E0[p
e1
1 p

e2
2 ]

=

E0

F
(e1,e2)
n

E0

E0[p
e1
1 ...p

et−1
t−1 ]

=

E0

F
(e1,...,et−1)
n

E0

E0[p
e1
1 ...p

et
t ]

=

E0

F0

F1

Fn

F
(e1,...,et)
n
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OSIDH PROTOCOL - GRAPHIC REPRESENTATION II
Once that Alice obtain from Bob the curve 𝐺𝑛 together with the collection of

data encoding the directions, she takes 𝑒1 steps in the 𝔭1-isogeny chain and

push forward all the 𝔭𝑖-isogeny chains for 𝑖 > 1.

Gn p1

p2
p3

p4

G
(−1)
n,1 G

(1)
n,1

G
(1)
n,2

G
(−1)
n,2

G
(2)
n,1 G

(r)
n,1G

(−2)
n,1G

(e1)
n,1G

(−r)
n,1

G
(r)
n,2

G
(−r)
n,2

G
(e1,1)
n,2

G
(e1,e2)
n,2 G

(e2)
n,2
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E0

E1

E2

E3

En

E′
1 F1

F2
F3

F4

F5

Fn

E0

E1

En

E0

E0[p1]

=

E0

E0

E0[p
e1
1 ]

=
E0

E0

E0[p
e1
1 p2]

=

E0

E0

E0[p
d1
1 p

e2
2 ]

=

E0

E0

E0[p
e1
1 ...p

e3
3 ]

=

E0

E0

E0[p
e1
1 ...p

et−1
t−1 ]

=

E0

E0

E0[p
e1
1 ...p

et
t ]

=

E0

F
(1)
n F

(e1)
n F

(e1,1)
n F

(e1,e2)
n F

(e1,e2,e3)
n F

(e1,...,et−1)
n F

(e1,...,et)
n

F0

F1

Fn

E′′
1 = G1

G2

G3

G4

G5

Gn

E0

E1

En

E0

E0[p1]

=

E0

E0

E0[p
d1
1 ]

=

E0

E0

E0[p
d1
1 p2]

=

E0

E0

E0[p
d1
1 p

d2
2 ]

=

E0

E0

E0[p
d1
1 ...p

d3
3 ]

=

E0

E0

E0[p
d1
1 ...p

dt−1
t−1 ]

=

E0

E0

E0[p
d1
1 ...p

dt
t ]

=

E0

G
(1)
n G

(d1)
n G

(d1,1)
n G

(d1,d2)
n G

(d1,d2,d3)
n G

(d1,...,dt−1)
n G

(d1,...,dt)
n

G0

G1

Gn

Fn p1

p2
p3

p4

F
(−1)
n,1 F

(1)
n,1

F
(1)
n,2

F
(−1)
n,2

F
(2)
n,1 F

(r)
n,1F

(−2)
n,1F

(d1)
n,1F

(−r)
n,1

F
(r)
n,2

F
(−r)
n,2

F
(d1,1)
n,2

F
(d1,d2)
n,2 F

(d2)
n,2

G
(−1)
n,1

G
(−r)
n,1

G
(1)
n,1

G
(2)
n,1

G
(e1)
n,1

G
(r)
n,1

G
(1)
n,2

G
(e2)
n,2

G
(r)
n,2

G
(−1)
n,2

G
(−r)
n,2

G
(e1,1)
n,2

G
(e1,e2)
n,2

p1

p2

p3

p4

BOB

ALICE
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OSIDH Hard problems

CLASSICAL HARD PROBLEMS

Endomorphism ring problem

Given a supersingular elliptic curve 𝐸/𝔽𝑝2 and 𝜋 = [𝑝], determine
1. End(𝐸) as an abstract ring.
2. An explicit endomorphism 𝜙 ∈ End(𝐸) − ℤ.
3. An explicit basis 𝔅0 for End0(𝐸) over ℚ.
4. An explicit basis 𝔅 for End(𝐸) over ℤ.

Endomorphism ring transfer problem

Given an isogeny chain

𝐸0 ⟶ 𝐸1 ⟶ … ⟶ 𝐸𝑛

and End(𝐸0), determine End(𝐸𝑛).
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OSIDH Hard problems

HARD PROBLEMS
Endomorphism Generators Problem

Given a supersingular elliptic curve 𝐸/𝔽𝑝2 , 𝜋 = [𝑝], an imaginary quadratic

order 𝒪 admitting an embedding in End(𝐸) and a collection of compatible

(𝒪, 𝔮𝑛)-orientations of 𝐸 for (𝔮, 𝑛) ∈ 𝑆, determine
1. An explicit endomorphism 𝜙 ∈ 𝒪 ⊆ End(𝐸)
2. A generator 𝜙 of 𝒪 ⊆ End(𝐸)

Suppose 𝑆 = {(𝔮, 𝑛)} = {(𝔮1, 𝑛1), … , (𝔮𝑡, 𝑛𝑡)} where 𝔮1, … , 𝔮𝑡 are pairwise

distinct primes such that

[0, … , 𝑛1] × … × [0, … , 𝑛𝑡] ⟶ 𝒞ℓ(𝒪)
(𝑒1, … , 𝑒𝑡) ⟶ [𝔮𝑒1

1 ⋅ … ⋅ 𝔮𝑒𝑡
𝑡 ]

is injective. Then, the problem should remain difficult.

We can reformulate this in a way that allows ( ̄𝔮𝑖, 𝑛𝑖) ∈ 𝑆:

[−𝑛1, … , 𝑛1] × … × [−𝑛𝑡, … , 𝑛𝑡] ⟶ 𝒞ℓ(𝒪)
(𝑒1, … , 𝑒𝑡) ⟶ [𝔮𝑒1

1 ⋅ … ⋅ 𝔮𝑒𝑡
𝑡 ]

is injective. If 𝑒𝑖 < 0, then 𝔮𝑒𝑖
𝑖 corresponds to ( ̄𝔮𝑖)

|𝑒𝑖|
.
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OSIDH Security

SECURITY PARAMETERS - FIRST CHOICE
Consider an arbitrary supersingular endomorphism ring 𝒪𝔅 ⊂ 𝔅 with

discriminant 𝑝2. There is a positive definite rank 3 quadratic form

disc ∶ 𝒪𝔅/ℤ ℤ
𝛼 |disc(𝛼)| = |disc (ℤ [𝛼]) |

⋀2 (𝒪𝔅) ⊇ ℤ ∧ 𝒪𝔅

=
representing discriminants of orders embedding in 𝒪𝔅.

The general order 𝒪𝔅 has a reduced basis 1 ∧ 𝛼1, 1 ∧ 𝛼2, 1 ∧ 𝛼3 satisfying

|disc(1 ∧ 𝛼𝑖)| = Δ𝑖 where Δ𝑖 ∼ 𝑝2/3

(Minkowski bound: 𝑐1𝑝2 ≤ Δ1Δ2Δ3 ≤ 𝑐2𝑝2).

In order to hide 𝒪𝑛 in 𝒪𝔅 we impose

ℓ2𝑛|Δ𝐾| > 𝑐𝑝2/3 ⇒ 𝑛 ∼
logℓ(𝑝)

3

so that there is no special imaginary quadratic subring in 𝒪𝔅 = End(𝐸𝑛).
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Conclusion Reformulation

OSIDH - VORTEX & WHIRLPOOL

We can read this scheme using the terminology introduced at the beginning.

After the choice of the secret key, we observe a vortex: Alice (respectively Bob)

acts on an isogeny crater (that in the case of 𝒪𝐾 = ℤ [𝜔] or ℤ [𝑖] consists of a
single points) with the primes 𝔭𝑒1

1 ⋅ … ⋅ 𝔭𝑒𝑡
𝑡 (respectively 𝔮𝑑1

1 ⋅ … ⋅ 𝔮𝑑𝑡
𝑡 ).

This action is eventually transmitted along the ℓ-isogeny chain and we get a

whirlpool. We can think of the isogeny volcano as rotating under the action of

the secret keys and the initial ℓ-isogeny path transforming into the two secret
isogeny chains.
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Conclusion Summary

CONCLUSIONS
By imposing the data of an orientation by an imaginary quadratic ring 𝒪, we
obtain an augmented category of supersingular curves on which the class group

𝒞ℓ(𝒪) acts faithfully and transitively.

This idea is already implicit in the CSIDH protocol, in which supersingular curves

over 𝔽𝑝 are oriented by the Frobenius subring ℤ[𝜋] ≅ ℤ[√−𝑝].
In contrast we consider an elliptic curve 𝐸0 oriented by a CM order 𝒪𝐾 of class

number one. To obtain a nontrivial group action, we consider ℓ-isogeny chains,
on which the class group of an order 𝒪 of large index ℓ𝑛 in 𝒪𝐾 acts.

The map from ℓ-isogeny chains to its terminus forgets the structure of the
orientation, and the original curve 𝐸0, giving rise to a generic s.s. elliptic curve.

We define a new oriented supersingular isogeny Diffie-Hellman (OSIDH)

protocol, which has fewer restrictions on the proportion of supersingular curves

covered and on the torsion group structure of the underlying curves.

Moreover, the group action can be carried out effectively solely on the

sequences of moduli points (such as 𝑗-invariants) on a modular curve, thereby
avoiding expensive isogeny computations, and is further amenable to speedup

by precomputations of endomorphisms on the base curve 𝐸0.
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This is a work in progress and we still want to develop the following aspects:

▶ Security analysis and setting security parameters.

▶ Implementation and algorithmic optimization.

▶ Use of canonical liftings.

MERCI POUR VOTRE ATTENTION
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