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ISOGENY GRAPHS h%l

Definition
Given an elliptic curve E over k, and a finite set of primes S, we can associate
an isogeny graph G = (E, S)

» whose vertices are elliptic curves isogenous to E over k, and

» whose edges are isogenies of degree £ € S.

The vertices are defined up to Ek-isomorphism and the edges from a given vertex
are defined up to a k-isomorphism of the codomain.

If S = {¢}, then we call G an ¢-isogeny graph, G,.

For an elliptic curve E/k and prime ¢ # char(k), the full £-torsion subgroup is a
2-dimensional [ ,-vector space:

E[(]={P € Ek][tP =0} ~F?

Consequently, the set of cyclic subgroups is in bijection with P1(F,), which in
turn are in bijection with the set of £-isogenies from E.

Thus, the ¢-isogeny graph of E'is (¢ + 1)-regular (as a directed multigraph).
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SUPERSINGULAR ISOGENY GRAPHS %A

The supersingular isogeny graphs are remarkable because the vertex sets are
finite : there are (p + 1)/12 + ¢, curves. Moreover

» every supersingular elliptic curve can be defined over [ 2;
» all £-isogenies are defined over [
» every endomorphism of E is defined over [ ..

The lack of a commutative group acting on the set of supersingular elliptic
curves/[,. makes the isogeny graph more complicated.
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SUPERSINGULAR [SOGENY GRAPHS - SPECIAL VERTICES é

Supersingular curves with j-invariants 0 and 1728 have extra automorphisms,
besides [+1].
> E .95 is supersingular if p = 3 mod 4

1+7rp

5 )

AUt(E1795) = {[£1], [+i]}  End(E,708) = Z([i],

where [i](x,y) = (—x,iy) fori* = —=1in F . and 7, (z,y) = («,y?) is
Frobenius.
» E, is supersingular if p =2 mod 3

Aut(Ey) = {[+1], [£¢], [£¢5]}  End(Ey) = Z{[C5], )

where [G](z,y) = (Gz,y) for G+ G +1=0inF .

Because of these extra automorphisms, supersingular isogeny graphs may fail to
really be undirected graphs.

Since this issue occurs only at neighbours of E, and E, ;,4, we usually forget this
subtlety.

3¢
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ORIENTATIONS nén

Let O be an order in an imaginary quadratic field K. An O-orientation on a
supersingular elliptic curve E is an embedding ¢ : O < End(E), and a
K-orientation is an embedding ¢ : K < End’(F) = End(E) ®, Q. An
O-orientation is primitive if O ~ End(E) N «(K).

Theorem

The category of K-oriented supersingular elliptic curves (E, ¢), whose mor-
phisms are isogenies commuting with the K-orientations, is equivalent to the
category of elliptic curves with CM by K.

Let ¢ : E — Fbe an isogeny of degree /. A K-orientation . : K < End’(E)
determines a K-orientation ¢, (.) : K < End’(F) on F, defined by

6.()(0) = 7 doula) o6,

Conversely, given K-oriented elliptic curves (E, 1) and (F, 1) we say that an
isogeny ¢ : E — F'is K-oriented if ¢, (1) = ¢, i.€., if the orientation on F'is
induced by ¢.

)
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ORIENTED ISOGENY GRAPHS - VERTICES & EDGES é

Two K-oriented curves are isomorphic if and ony if there exists a K-oriented
isomorphism between them. We denote G ¢4(E, K') the S-isogeny graph of
K-oriented supersingular elliptic curves over . whose vertices are isomorphism
classes of K-oriented supersingular elliptic curves /I . and whose edges are
equivalence classes of K-oriented isogenies of degree in S.

The only vertices of G,(E, K) with extra automorphisms are (E,¢) where
either

» E = FE| ;95 and (i) = [+i] or
> E = Ejand.((3) = [£G]-
Then (E, ) has out-degree ¢ + 1, except at the oriented curves with extra

automorphisms, in which case thise degree is 2(¢ + 1 — r,)/|Aut(E)| + 7,
where |Aut(E)|r, is the number of elements of @ of norm £.

Arpin, S. and Chen, M. and Lauter, K.E. and Scheidler, R. and Stange, K.E. and Tran, H.T.N. -

Orientations and cycles in supersingular isogeny graphs \
5
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ORIENTED ISOGENY GRAPHS - stucTuRE é

The orientation by a quadratic imaginary field gives to supersingular isogeny
graphs the rigid structure of a volcano. It also differentiates vertices in the
descending paths from the crater, determining an infinite graph.

G,(E, K) consists of connected components, each of which is a volcano.

» The crater consists of K-oriented elliptic curves which are @-primitive for
some fixed ¢-fundamental order @ of K.

» Oriented curves at depth k are primitively oriented by orders of index % in ©.

» We recover the standar terminology for oriented isogenies:

° If @ = (9’ we say that ¢ is horizontal;
e If @ D (9’ we say that ¢ is ascending;
e If @ C (9" we say that ¢ is descending.

Y
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ORIENTED ISOGENY GRAPHS - AN EXAMPLE é

Let E,/F,; be the supersingular elliptic curve with j(E) = 0, oriented by the
order Oy = Z|w], where w? + w + 1 = 0. The unoriented 2-isogeny graph is the
finite graph on the left.

The orientation by K = Q|w] differentiates vertices in the descending paths from
E,, determining an infinite graph shown here to depth 4:

-
<%
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ORIENTED ISOGENY GRAPHS - VET ANOTHER EXAMPLE %A

We let again p = 71 and we consider the isogeny graph oriented by Z[w,4] where
wr¢ generates the ring of integers of Q(v/—79).

Y
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ISOGENY CHAINS LEUL[‘]

Definition

An ¢-isogeny chain of length n from E,, to E is a sequence of isogenies of
degree ¢:

%o (0 2 Pn1
Ey—FE —FEy,— .. —E =FE.
The ¢-isogeny chain is without backtracking if ker (¢, © ¢;) # E;[(], ¥
The isogeny chain is descending (or ascending, or horizontal) if each qb is
descending (or ascending, or horizontal, respectively).

The dual isogeny of ¢, is the only isogeny ¢, ; satisfying ker (¢, o ¢;) = E;[{].
Thus, an isogeny chain is without backtracking if and only if the composition of
two consecutive isogenies is cyclic.

Lemma

The composition of the isogenies in an ¢-isogeny chain is cyclic if and only if
the ¢-isogeny chain is without backtracking.
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CLASS GROUP ACTION h%l

» SS(p) = {supersingular elliptic curves over Fp up to isomorphism}.
» SSy(p) = {0-oriented s.s. elliptic curves over F,, up to K-isomorphism}.

» SSI(p) =subset of primitive ¥-oriented curves.
The set SS,(p) admits a transitive group action:
e(O) x SSp(p) — SSy(p) ([a], E) /——— [a] - E = E/E[q]

The class group &/(O) acts faithfully and transitively on the set of O-
isomorphism classes of primitive @-oriented elliptic curves.

In particular, for fixed primitive @-oriented E, we obtain a bijection of sets:

@(O) — SSY(p) [a] — [a] - E
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CEEECTIVE CLASS GROUP ACTION ol

The theory of complex multiplication relates the geometry of isogenies to the
arithmetic Galois action on elliptic curves in characteristic zero, mediated by the
map of &(0) into each.

Over a finite field, we use the geometric action by isogenies to recover the class
group action. In particular we describe the action of ¢4(0) on ¢-isogeny chains in
the whirlpool.

Suppose that (E;, ¢,) is a descending ¢-isogeny chain with
Ok CEnd(Ey),...,0 =Z +"0) C End(E,).
If q is a split prime in O over q + £, p, then the isogeny
Yo+ By = Fy = Ey/Eq[q]

can be extended to the ¢-isogeny chain by pushing forward the cyclic group
Co = Eplal:

Co = Eyla], Cy = ¢o(Cp)s .., Cy = ¢ 1(Cr ),
and defining F; = E,/C,.
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LADDERS

o

This construction motivates the following definition.
Definition

An ¢-ladder of length n and degree ¢ is a commutative diagram of £-isogeny
chains (E;, ¢;), (F;, #;) of length n connected by g-isogenies v, : E; — F;

Lo o Ul 1 E.2 2 ¢n-1 E.n
wol wll ¢2l wnl
° . ° g +— — @
Fo ¢0 F1 ¢1 F2 ¢2 n—1 Fn

If 1, is as above ((1,) = Eylq]), the ladder encodes the action of ¢4(0) on
£-isogeny chains, and consequently on elliptic curves at depth n.
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CLOUDS ol

In order to discuss the local neighborhood of a graph, we introduce the notion of
an ¢-isogeny cloud around E: this is a subgraph of G,(E), whose paths from E
extend to length r.
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VORTICES & WHIRLPOOLS Lo

We define a vortex to be the ¢-isogeny subgraph G,(E,0) of G,(E, K)
vertices are isomorphism classes of (9-oriented elliptic curves with £-maximal
endomorphism ring, equipped with an action of &(0).

D
A whirlpool will be a complete isogeny volcano (the union of the subgraphs

G,(F,0,)) acted on by a compatible action of the class group &(0,,). We
would like to think at isogeny graphs as moving objects.

—
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CODIES ol

Given an order O, we write O(M) = Z + MO - the order of index M, and
0,, = O(£™). Moreover, we denote the kernel

U(O,M) =ker(G(O(M)) — €(0))
which is the stabilizer of an isomorphism class of a curve oriented by O.

An Eddy at F'is the subgroup of ¢-isogenies descending from E, equipped with
the compatible action of U (0O, ™).
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INITIALIZING THE LADDER %A

We characterize the initialization phase of ladder construction = construction of
g-isogenies of £-isogeny chains for level one, I' = PSL,(Z).

The structure of oriented isogeny graphs (of level one) depends only on the class
groups ¢X(0,,) (at level n) and the quotient maps (0,,) — ¢¢(0,,_;). The
quotient maps determine the edges of the £-isogeny graph (between level n and
n — 1) and the class of the prime ideals over ¢ # ¢ in &(0,,) determine edges
between vertices at level n.

We assume we are given a descending modular £-isogeny chain, beginning with
an initial modular point associated to a CM point with CM order 0. In order to
initialize a g-ladder, at small distance m from the initial point, we can identify a
reduced ideal class in &(0,,,) which lies in the same class in ¢/(0,,,).
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INITIALIZING THE LADDER - AN CyAMPLE %A

Suppose Dy = —3, and £ = 2; we note that for all n > 3, that
QUO,) =T7/27 x 72" 27
and in particular, ¢¢(0,,)[2] consist of the classes of binary quadratic forms
{{1,0,|Dg|201) (| Dgcl, 0, 27 71) (€2, €2, my ), (€2 Dl 2| Dl o) }-
where (* — 40%n, = (*|Dy|? — 40?| DyIny = —€?"| Dy |, whence
ny =1+ 0202|Dy| and ny, = |Dg| + €22,

For n = 3, the form (12,12, 7) reduces to (7, 2, 7) and the reduced
representatives are:

{(1,0,48), (3,0,16), (4,4,13),(7,2,7)}.
but for for n > 4, since 12 < n,, the forms
{(1,0,3-4772),(3,0,4"2), (4,4,n,), (12,12,n,)}

are reduced.
mn
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INITIALIZING THE LADDER - & picTu: ol

(1,1,1)

(1,0,3) @
1012 /\ 304 403>
——  3-isogeny __—7
(1,0,48) A, (4,4,13) (3,0,16) /\ (7,2,7) ~ (12,12,7)
A 13816 121219 /\

10192/\4449 13 816 ,,4 7428 7 —4,28)
o

L J
(1,0, 768 4 4,193) (3,0,256)
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INITIALIZING THE LADDER - ATanLe

g m fmn [fm] [fina]

7 4 (7,4,28) [(7,4,28)] [(7,2,7)]
13 4 (13,8,16) [(13,8,16)]  [(4,4,13)]
19 5 (19,14,43)  [(19,14,43)] [(12,12,19)]
31 4 (31,10,7) [(7,4,28)] [(7,2,7)]
37 4 (37,34,13)  [(13,—8,16)]  [(4,4,13)]
43 5 (43,14,19)  [(19,—14,43)] [(12,12,19)]
61 4 (61,56,16)  [(13,—8,16)]  [(4,4,13)]
67 6  (67,24,48) [(48,—24,67)] [(12,12,67)]
73 5 (73,40,16)  [(16,—8,49)]  [(4,4,49)]
79 4 (79,38,7) [(7,4,28)] [(7,2,7)]
97 5  (97,56,16)  [(16,8,49)]  [(4,4,49)]

103 4 (103,46,7)  [(7,—4,28)]  [(7,2,7)]
109 4 (109,70,13)  [(13,8,16)]  [(4,4,13)]
127 4 (127,116,28)  [(7,4,28)] [(7,2,7)]
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COMPLETING SQUARES OF ISOGENIES




EXTENDING THE LADDER

xmfl'#)'ymfl
I

I\
6 ’I \‘
Yos v Yh
® 0
f-extensions

v
Ln@®

[
Leowold
Let ¢ = 2.

» The two /-extensions are determined
by a quadratic polynomial (deduced
from 4,15 Ym—a:

Be(y) =0

We can solve for y,,, y.,, its roots.

» We have a degree ¢ + 1 polynomial
¢,(y) = 0 determined by =,,, but we
do note need to compute it. It suffices

bq(y) mod ¢,(y)
Indeed

P, (7, y) = ¢ (y) mod (z—z,,, ¢,(y))

N
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ADDING LEVEL STRUCTURE %A

There are multiple reasons to add level structure to our construction:

» With an ¢-level structure, the extension of ¢-isogenies by modular
correspondences allows one to automatically remove the dual isogeny
(backtracking): there are ¢ rather than ¢ + 1 extensions.

()
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ADDING LEVEL STRUCTURE

There are multiple reasons to add level structure to our construction:
» With an ¢-level structure, the extension of £-isogenies by modular
correspondences allows one to automatically remove the dual isogeny

(backtracking): there are ¢ rather than ¢ + 1 extensions.

o

» The modular isogeny chain is a potentially-non injective image of the isogeny
chain.
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ADDING LEVEL STRUCTURE %A

There are multiple reasons to add level structure to our construction:

» With an ¢-level structure, the extension of ¢-isogenies by modular

correspondences allows one to automatically remove the dual isogeny
(backtracking): there are ¢ rather than ¢ + 1 extensions.

» The modular isogeny chain is a potentially-non injective image of the isogeny
chain.
» Rigidifying automorphisms should also shorten the distance to which we

need to go in order to differentiate 2 points (two torsion of &(Q) may lift to
non 2-torsion point in &(0,T")).

‘ 22 X
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ADDING LEVEL STRUCTURE %A

There are multiple reasons to add level structure to our construction:

» With an ¢-level structure, the extension of ¢-isogenies by modular
correspondences allows one to automatically remove the dual isogeny
(backtracking): there are ¢ rather than ¢ + 1 extensions.

» The modular isogeny chain is a potentially-non injective image of the isogeny
chain.

» Rigidifying automorphisms should also shorten the distance to which we

need to go in order to differentiate 2 points (two torsion of &(Q) may lift to
non 2-torsion point in &(0,T")).

» g-modular polynomial of higher level are smaller.

‘ 22 X
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ISOGENY GRAPHS WITH LEVEL STRUCTURE EA

For any congruence subgroup I of level coprime to the characteristic, we have a
covering G4(E,T') — G4(F) whose vertices are pairs (E,I'(P, Q)) of
supersingular elliptic curves/[ . and a I'-level structure, and edges are isogenies
v (B, T(P,Q)) — (E",T'(P',Q")) such that p(I'(P, Q)) = ['(P",Q’).

Y
@\\_/;< ; Eg. I',(V)-structures.

/ I Vertices (F, G) with G < E[N] of order N

®

End(E,G) = {a€cEnd(E)|a(G)C G}

3 Ny . isomorphic to Eichler order.
O—0

\ Onthe leftthe Iy (3) supersingular 2-isogeny
graph.

14 & {(Ey, Gy), (B, Gy), (Ey, G3)} where
G,,G,4, G5 maps to each other under the
1 automorphism of E; they define 3 isogenies

== W=—=(3) t&s
O O

q=)

‘ 23 X
MODULAR OSIDH | Séminaire ATI - 19 May 2022




ORIENTED ISOGENY GRAPHS WITH LEVEL STRUCTURE %A

We will write G¢(SS,(p,T')) or G4(SS,(p,T')) for the supersingular isogeny
graphs oriented by K with I'-level structure.

Once again we have covers

Gs(SSk(p, 1)) = Gs(E,K)  G5(SSp(p,T)) = G5(E,0)

The action of ideals through isogenies lets us define an action on Gg(SSy(p,I'))
by a ray class group &Z(0,T")

&(0,T) x SSy(p,I') — SS(p,T)
([a], (B, (P, Q))) — (¢a(E), T(¢4(P), $4(Q)))

‘ 24 X
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SOME MODULAR CURVES OF INTEREST FOR OSIDH ol

Weber modular function f=f W/

such that j = (fz“%eﬁ

X(3) 't = Hesse invariant

=13
__ (£+216)t &3
r="r=27

Xo(3) =27+ (%)m

m

J-invariant

‘ 25 X
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\WEBER MODULAR FUNCTIONS

Introduced by H. Weber, they are

f(r) = 4_8177?(7;72_)) =g | (1+q¢"2)
fi(r) = ZEE; =g [[(1—¢"2)
fom) = V22— Vg [T+

n=1

Historically, f, was the first to be studied by Weber, who eventually introduced
the others such that

(X + (X = )X —f3) = X° =9, X +16

‘ 26 X
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WEBER MODULAR FUNCTIONS - propcami ol

The previous relation (X 4 §8)(X — f$)(X —§§) = X® — 1, X + 16 yields
> = 1

‘ 27 X
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WEBER MODULAR FUNCTIONS - propcami ol

The previous relation (X 4 §8)(X — f$)(X —§§) = X® — 1, X + 16 yields
> =T
> 1(20)](7) = (D (D (1) = V2

‘ 27 X
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WEBER MODULAR FUNCTIONS - propcami ol

The previous relation (X + 8)(X —$)(X —§3) = X3 — 1, X + 16 yields
> =T
> 11 (20)F(1) = F(h (D (1) = V2

which gives

> g (T ; 1) n (g) n(27) = n(r)?

‘ 27 X
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WEBER MODULAR FUNCTIONS - propcami ol

The previous relation (X +8)(X — $)(X — §3) = X3 — 4, X + 16 yields
> =R
> 11(27)f(7) = ()i (7)fa (1) = V2
which gives
> (g (LH) " (I) n(27) = 1(7)?
48 9 9
They have transformation formulae

> (f’flva) ° S = (faf2af1)
> (F, 51, F2) o T = (Cag F15 Cag T Coafa)

‘ 27 X
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WEBER MODULAR FUNCTIONS - propcami ol

The previous relation (X + 8)(X — $)(X — §3) = X3 — 4, X + 16 yields
> =R
> 11(20)7a(7) = (D (D (1) = V2
which gives
> (g (LH) " (I) n(27) = 1(7)?
48 9 9
They have transformation formulae

> (f»fl?fQ) ° S = (f)f2af1)
> (F, 51, F2) o T = (Cag F15 Cag T Coafa)

and relations with the j-invariant

(™ -16)° (2 +16)° (13 +16)°
g T B 7T

‘ 27 X
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\WEBER MODULAR POLYNGMIALS %A

f(7) is a modular function of level 48 giving a degree 72 cover of the j-line.
The modular polynomials with respect to § are the new (Weber) integral
polynomials &, (x,y) such that

®, (f(7),f(q7)) =0

Division Polynomials

Asymptotically, modular polynomials have ¢?> monomials, but the symmetry
@, (Cau, G = q“(x y) Yields a great sparsness:

@5(969)—33 — 7 +4wy+y6
(2, y) = 28 —xy + Txty —83:y+y8
@, (x,y) = 12 — iyt + 1lac — 44x7y" + 882%y° — 883y + 322y + y'?

‘ 28 X
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WEBER MODULAR POLYNOMIALS - FURTHER REDUCTIONS é

For ¢ = 2 or £ = 3, the 48-level structure gives the modular polynomials @, (x,y)
and ®5(z, y) a particular form.

3
> We descend the 2-level structure by setting t = —f%, so that j = ( m%) .
We obtain the modular polynomial:

Uy (z,y) = (2 —y)y + 162
and the Weber modular polynomial ®,(z,y) = —¥,(—a%, —y®) remains
irreducible

» A similar descent of the 3-level to the function r = §3, gives the modular
polynomial

Uy(z,y) =2 —2%y® + 8zy + ¢,
such that 4 (r(7),r(37)) = 0, for which ®;(z,y) = ¥4(23,4?) is irreducible.

29
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WEBER CURVES h%l

We fix the normalization (ug, uy,us) = (F, (6815 Cig T2)-
Notice that {(5,u; | j € Z/24Z} are the 72 roots of

(X2 —16)% — j(9) X € Q(Coa)llg"**]]

The map determined by the normalized Weber functions (ug® : ui™ : ug* : 1)
determines a Weber modular curve W, in P?

w. o Xo+XP X3 =0,
0 XX, X, = 2" X3

for m and n such that mn = 8
The quotient Weber curve W, is defined as the image of (ud™ : u™ : ud™ : 1):

XP 4+ X7+ X5 = 48X7,
Wn: 3m 3
XX, X, =27 X3,

These curves are equipped with maps W,,,,, — W,, for each product mn | 24.

30
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\WEBER MODULAR CURVES %A

To each factorization mn = 24, the Weber curve W, in P3, defined by the triple
of Weber functions (uf*, uf”, uj*), comes equipped with an action of PSL,(Z).

Weber Modular Curves

We denote the kernel of the action by I',,, identifying the Weber curves with
the modular curve X (T',,).

31
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\WEBER MODULAR GROUPS LC0L0

The PSL,(Z) action on Weber functions induces a representation in GL3(Q(¢,,))

10 0 0 g0
Sr— 0o 0o &G" Tr— &G 0 0
0 ¢ 0 0 0 &

24

Its kernel T',, is a normal congruence subgroup of PSL,(Z).

Noting thatI'y C I's NI'y = I'y,, we reduce to determining I'; and the chain
rcr,cr, crly.
» The Weber kernel group I'; equals I'(2) and W, = X (2).
» The Weber kernel group I'; equals I'(2) N I’} (3), and for each n
dividing 8
» The Weber kernel group I';, equals T'(4) and W, = X (4).
» The Weber kernel group ', equals I',(8) and W, = X ,(8).

32
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WEBER MODULAR GROUPS - THE GRoUP T

T(16) € Ty C T,(8) = {(“ b

o
. d) : bECEOmOdS}

Proposition

The Weber kernel subgroup Iy is generated by I'(16) and (183 g)

X(16)

L6

X(16,8,16) (52
% <<lsg>>\‘\

X(r(16),(52)) X(r(16), ('5'9))

X,(16)
!

s

nh
= =

s(8)

@_



SUPERSINGULAR FIELDS OF DEFINITIONS %A

Theorem

For any positive integer N, then the supersingular invariants on the modular
curve X, (V) are defined over [ -, and if p = £1 mod N, then the supersin-
gular invariants also split over F . on X; (V).

As a consequence, the split Cartan modular curve X, (N), defined by the
congruence subgroup T',(NN) also splits the supersingular moduli for every N.

Then, if p = +1 mod N, then the supersingular invariants on the modular curve
X(N) are defined over [ ..

Theorem
The supersingular Weber invariants on W,, are defined over [ ..

X(16,8,16) — X(8)

() (&)

Ws —— X,(8)
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\WEBER INITIALIZATIONS h%l

Let u be a supersingular value of the Weber function,

along the chain Wy — Y — X,(2) — X (1).
The elliptic curves associated to Weber invariants is a fiber in the family:

1

2 .3
y tay==x 2 _e1”
over u on the Weber curve.

The OSIDH protocol is initialized with oriented chains from an effective CM order.
The initial values with which to build the public ¢-isogeny chains are

D g S0 tv | D J1 51 iy
-3 0 —2' (V2| -12 2015 28  —(V2)8
-4 123 23 2 -16 663  2° 23
-7 —15% -1 -1 —28 2553 212 —24
-8 203 26 22 -32 4 3 23(V241)
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WEBER INITIALIZATIONS - DISCRNINANT —7 ol

Endomorphism ring is small: generated by an endomorphism of degree 2 We
avoiding any pathologies associated with the extra automorphisms.

. @ .O >t0:—1andcrootofx2—x+2

» ¢* and ¢* also t-values over
j=—153,
b Ty(—1,¢t) = Ty(—1,6) = 0, the

two extensions correspond to the
horizontal 2-isogenies.

> U, (ct ct) = U,(ct, —2%) = 0: the
former enters a cycle the latter

/ \ / \ induces a descending isogeny.

Initialization: (ty,t,ts, ... ) beginning with (—1,¢*, =24, ...).
Successive solutions to W, (t;,t,,,) = 0 are necessarlly descending.
Extension: random choice of root ¢;, of W, (t;, x).
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WEBER INITIALIZATIONS - DISCRIMINANT —4 é

@—> » t-invariants over j = 123 fall in two
orbits of points, {2, 2w, 2w?} of
) multiplicity 2, and {—4, —4w, —4w?}
of multiplicity 1.

@ @ » These points at the surface are

linked by a 2-isogeny and to
2-depth 1, to t = 8.

> U, (wr,w?y) = wl,(z,y): the
choice of representative in the orbit

/ \ / \ gives rise to one of three distinct

components of the 2-isogeny
graph.

Initialization: (¢,,t;,t,,...) = (2,8,8¢, ... ) where cis a root of 22 — 8z — 2.
Extension: random selection of a root ¢, ; of Wy (¢t;, ).

The full 2-isogeny graph has ascending edges from the depth one to ¢, = 2
If an isogeny is descending its only extension to a 2-isogeny chain is descending
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WEBER INITIALIZATIONS - DiSCaIMNANT —3 ol

>ty =—(V2) = —2V2.
> {tg, tow, tow?} are t-values over
j =0, each of multiplicity 3

= —t3,and
/\ /\ /\ to,tlw):\ll2(t0,t1w2):0,

Since 2 is inert, every path from ¢, is descending, so we may initialize the
2-isogeny chain with (g, t;w).

There are additional ¢-invariants at each depth > 0 which admit ascending and
descending isogenies.

Any descending isogenies must rejoin this graph of descending isogenies from
the surface.
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