A MODULAR APPROACH TO OSIDH

LEONAROO COLȮ \& DAVID KOHEL

Institut de Mathématiques de Marseille

Séminaire ATI - Arithmétique et Théorie de l'Information

ISOGENY GRAPHS

Definition

Given an elliptic curve E over k, and a finite set of primes S, we can associate an isogeny graph $G=(E, S)$

- whose vertices are elliptic curves isogenous to E over \bar{k}, and
- whose edges are isogenies of degree $\ell \in S$.

The vertices are defined up to \bar{k}-isomorphism and the edges from a given vertex are defined up to a \bar{k}-isomorphism of the codomain.
If $S=\{\ell\}$, then we call G an ℓ-isogeny graph, G_{ℓ}.
For an elliptic curve E / k and prime $\ell \neq \operatorname{char}(k)$, the full ℓ-torsion subgroup is a 2-dimensional \mathbb{F}_{ℓ}-vector space:

$$
E[\ell]=\{P \in E[\bar{k}] \mid \ell P=O\} \simeq \mathbb{F}_{\ell}^{2}
$$

Consequently, the set of cyclic subgroups is in bijection with $\mathbb{P}^{1}\left(\mathbb{F}_{\ell}\right)$, which in turn are in bijection with the set of ℓ-isogenies from E.

Thus, the ℓ-isogeny graph of E is $(\ell+1)$-regular (as a directed multigraph).

SUPERSINGULAR ISOGENY GRAPHS

The supersingular isogeny graphs are remarkable because the vertex sets are finite : there are $(p+1) / 12+\epsilon_{p}$ curves. Moreover

- every supersingular elliptic curve can be defined over $\mathbb{F}_{p^{2}}$;
- all ℓ-isogenies are defined over $\mathbb{F}_{p^{2}}$;
- every endomorphism of E is defined over $\mathbb{F}_{p^{2}}$.

The lack of a commutative group acting on the set of supersingular elliptic curves $/ \mathbb{F}_{p^{2}}$ makes the isogeny graph more complicated.

SUPERSINGULLAR ISOCENY GRAPHS - special verices

Supersingular curves with j-invariants 0 and 1728 have extra automorphisms, besides $[\pm 1]$.

- E_{1728} is supersingular if $p \equiv 3 \bmod 4$

$$
\operatorname{Aut}\left(E_{1728}\right)=\{[\pm 1],[\pm i]\} \quad \operatorname{End}\left(E_{1728}\right)=\mathbb{Z}\left\langle[i], \frac{1+\pi_{p}}{2}\right\rangle
$$

where $[i](x, y)=(-x, i y)$ for $i^{2}=-1$ in $\mathbb{F}_{p^{2}}$ and $\pi_{p}(x, y)=\left(x^{p}, y^{p}\right)$ is Frobenius.

- E_{0} is supersingular if $p \equiv 2 \bmod 3$

$$
\operatorname{Aut}\left(E_{0}\right)=\left\{[\pm 1],\left[\pm \zeta_{3}\right],\left[\pm \zeta_{3}^{2}\right]\right\} \quad \operatorname{End}\left(E_{0}\right)=\mathbb{Z}\left\langle\left[\zeta_{3}\right], \pi_{p}\right\rangle
$$

where $\left[\zeta_{3}\right](x, y)=\left(\zeta_{3} x, y\right)$ for $\zeta_{3}^{2}+\zeta_{3}+1=0$ in $\mathbb{F}_{p^{2}}$.
Because of these extra automorphisms, supersingular isogeny graphs may fail to really be undirected graphs.
Since this issue occurs only at neighbours of E_{0} and E_{1728}, we usually forget this subtlety.

ORIENTATIONS

Let \mathcal{O} be an order in an imaginary quadratic field K. An \mathcal{O}-orientation on a supersingular elliptic curve E is an embedding $\iota: \mathcal{O} \hookrightarrow \operatorname{End}(E)$, and a K-orientation is an embedding $\iota: K \hookrightarrow \operatorname{End}^{0}(E)=\operatorname{End}(E) \otimes_{\mathbb{Z}} \mathbb{Q}$. An \mathcal{O}-orientation is primitive if $\mathcal{O} \simeq \operatorname{End}(E) \cap \iota(K)$.

Theorem

The category of K-oriented supersingular elliptic curves (E, ι), whose morphisms are isogenies commuting with the K-orientations, is equivalent to the category of elliptic curves with CM by K.

Let $\phi: E \rightarrow F$ be an isogeny of degree ℓ. A K-orientation $\iota: K \hookrightarrow \operatorname{End}^{0}(E)$ determines a K-orientation $\phi_{*}(\iota): K \hookrightarrow \operatorname{End}^{0}(F)$ on F, defined by

$$
\phi_{*}(\iota)(\alpha)=\frac{1}{\ell} \phi \circ \iota(\alpha) \circ \hat{\phi}
$$

Conversely, given K-oriented elliptic curves (E, ι_{E}) and (F, ι_{F}) we say that an isogeny $\phi: E \rightarrow F$ is K-oriented if $\phi_{*}\left(\iota_{E}\right)=\iota_{F}$, i.e., if the orientation on F is induced by ϕ.

ORIENTED ISOGENY GRAPHS - vertices \& edoces

Two K-oriented curves are isomorphic if and ony if there exists a K-oriented isomorphism between them. We denote $G_{S}(E, K)$ the S-isogeny graph of K-oriented supersingular elliptic curves over $\mathbb{F}_{p^{2}}$ whose vertices are isomorphism classes of K-oriented supersingular elliptic curves $/ \mathbb{F}_{p^{2}}$ and whose edges are equivalence classes of K-oriented isogenies of degree in S.

Proposition

The only vertices of $G_{\ell}(E, K)$ with extra automorphisms are (E, ι) where either

- $E=E_{1728}$ and $\iota(i)=[\pm i]$ or
- $E=E_{0}$ and $\iota\left(\zeta_{3}\right)=\left[\pm \zeta_{3}\right]$.

Then (E, ι) has out-degree $\ell+1$, except at the oriented curves with extra automorphisms, in which case thise degree is $2\left(\ell+1-r_{\ell}\right) /|\operatorname{Aut}(E)|+r_{\ell}$ where $|\operatorname{Aut}(E)| r_{\ell}$ is the number of elements of \mathcal{O} of norm ℓ.

Arpin, S. and Chen, M. and Lauter, K.E. and Scheidler, R. and Stange, K.E. and Tran, H.T.N. Orientations and cycles in supersingular isogeny graphs

ORIENTED ISOGENY GRAPHS - structupe

The orientation by a quadratic imaginary field gives to supersingular isogeny graphs the rigid structure of a volcano. It also differentiates vertices in the descending paths from the crater, determining an infinite graph.
$G_{\ell}(E, K)$ consists of connected components, each of which is a volcano.

- The crater consists of K-oriented elliptic curves which are \mathcal{O}-primitive for some fixed ℓ-fundamental order \mathcal{O} of K.
- Oriented curves at depth k are primitively oriented by orders of index ℓ^{k} in \mathcal{O}.
- We recover the standar terminology for oriented isogenies:
- If $\mathcal{O}=\mathcal{O}^{\prime}$ we say that ϕ is horizontal;
- If $\mathcal{O} \supsetneq \mathcal{O}^{\prime}$ we say that ϕ is ascending;
- If $\mathcal{O} \subsetneq \mathcal{O}^{\prime}$ we say that ϕ is descending.

ORIENTED ISOGENY GRAPHS - an example

Let E_{0} / \mathbb{F}_{71} be the supersingular elliptic curve with $j(E)=0$, oriented by the order $\mathcal{O}_{K}=\mathbb{Z}[\omega]$, where $\omega^{2}+\omega+1=0$. The unoriented 2-isogeny graph is the finite graph on the left.
The orientation by $K=\mathbb{Q}[\omega]$ differentiates vertices in the descending paths from E_{0}, determining an infinite graph shown here to depth 4:

ORIENTED ISOCENY GRAPHS - vet anothere rxample

We let again $p=71$ and we consider the isogeny graph oriented by $\mathbb{Z}\left[\omega_{79}\right]$ where ω_{79} generates the ring of integers of $\mathbb{Q}(\sqrt{-79})$.

ISOGENY CHAINS

Definition

An ℓ-isogeny chain of length n from E_{0} to E is a sequence of isogenies of degree ℓ :

$$
E_{0} \xrightarrow{\phi_{0}} E_{1} \xrightarrow{\phi_{1}} E_{2} \xrightarrow{\phi_{2}} \ldots \xrightarrow{\phi_{n-1}} E_{n}=E .
$$

The ℓ-isogeny chain is without backtracking if $\operatorname{ker}\left(\phi_{i+1} \circ \phi_{i}\right) \neq E_{i}[\ell], \forall i$. The isogeny chain is descending (or ascending, or horizontal) if each ϕ_{i} is descending (or ascending, or horizontal, respectively).

The dual isogeny of ϕ_{i} is the only isogeny ϕ_{i+1} satisfying ker $\left(\phi_{i+1} \circ \phi_{i}\right)=E_{i}[\ell]$. Thus, an isogeny chain is without backtracking if and only if the composition of two consecutive isogenies is cyclic.

Lemma

The composition of the isogenies in an ℓ-isogeny chain is cyclic if and only if the ℓ-isogeny chain is without backtracking.

CLASS GROUP ACTION

- SS $(p)=$ \{supersingular elliptic curves over $\overline{\mathbb{F}}_{p}$ up to isomorphism\}.
- $\mathrm{SS}_{\mathcal{O}}(p)=\left\{\mathcal{O}\right.$-oriented s.s. elliptic curves over $\overline{\mathbb{F}}_{p}$ up to K-isomorphism $\}$.
- $\mathrm{SS}_{\mathcal{O}}^{p r}(p)=$ subset of primitive \mathcal{O}-oriented curves.

The set $\mathrm{SS}_{\mathcal{O}}(p)$ admits a transitive group action:

$$
\mathcal{C} \ell(\mathcal{O}) \times \mathrm{SS}_{\mathcal{O}}(p) \longrightarrow \mathrm{SS}_{\mathcal{O}}(p) \quad([\mathfrak{a}], E) \longmapsto[\mathfrak{a}] \cdot E=E / E[\mathfrak{a}]
$$

Proposition

The class group $\mathcal{C}(\mathcal{O})$ acts faithfully and transitively on the set of \mathcal{O} isomorphism classes of primitive \mathcal{O}-oriented elliptic curves.

In particular, for fixed primitive \mathcal{O}-oriented E, we obtain a bijection of sets:

$$
\mathcal{C \ell}(\mathcal{O}) \longrightarrow \mathrm{SS}_{\mathcal{O}}^{p r}(p) \quad[\mathfrak{a}] \longmapsto[\mathfrak{a}] \cdot E
$$

EEFECTIVE CLASS GROUP ACTION

The theory of complex multiplication relates the geometry of isogenies to the arithmetic Galois action on elliptic curves in characteristic zero, mediated by the map of $\mathcal{C}(\mathcal{O})$ into each.
Over a finite field, we use the geometric action by isogenies to recover the class group action. In particular we describe the action of $\mathcal{C}(\mathcal{O})$ on ℓ-isogeny chains in the whirlpool.

Suppose that $\left(E_{i}, \phi_{i}\right)$ is a descending ℓ-isogeny chain with

$$
\mathcal{O}_{K} \subseteq \operatorname{End}\left(E_{0}\right), \ldots, \mathcal{O}=\mathbb{Z}+\ell^{n} \mathcal{O}_{K} \subseteq \operatorname{End}\left(E_{n}\right)
$$

If \mathfrak{q} is a split prime in \mathcal{O}_{K} over $q \neq \ell, p$, then the isogeny

$$
\psi_{0}: E_{0} \rightarrow F_{0}=E_{0} / E_{0}[\mathfrak{q}]
$$

can be extended to the ℓ-isogeny chain by pushing forward the cyclic group $C_{0}=E_{0}[\mathfrak{q}]$:

$$
C_{0}=E_{0}[\mathfrak{q}], C_{1}=\phi_{0}\left(C_{0}\right), \ldots, C_{n}=\phi_{n-1}\left(C_{n-1}\right),
$$

and defining $F_{i}=E_{i} / C_{i}$.

LADDERS

This construction motivates the following definition.

Definition

An ℓ-ladder of length n and degree q is a commutative diagram of ℓ-isogeny chains $\left(E_{i}, \phi_{i}\right),\left(F_{i}, \phi_{i}^{\prime}\right)$ of length n connected by q-isogenies $\psi_{i}: E_{i} \rightarrow F_{i}$

If ψ_{0} is as above $\left(\left(\psi_{0}\right)=E_{0}[\mathfrak{q}]\right)$, the ladder encodes the action of $\mathcal{C}(\mathcal{O})$ on ℓ-isogeny chains, and consequently on elliptic curves at depth n.

CLOUDS

In order to discuss the local neighborhood of a graph, we introduce the notion of an ℓ-isogeny cloud around E : this is a subgraph of $G_{\ell}(E)$, whose paths from E extend to length r.

VORTICES \& WHIRLPOOLS

We define a vortex to be the ℓ-isogeny subgraph $G_{\ell}(E, \mathcal{O})$ of $G_{\ell}(E, K)$ whose vertices are isomorphism classes of \mathcal{O}-oriented elliptic curves with ℓ-maximal endomorphism ring, equipped with an action of $\mathcal{C} \ell(\mathcal{O})$.

A whirlpool will be a complete isogeny volcano (the union of the subgraphs $G_{\ell}\left(E, \mathcal{O}_{n}\right)$) acted on by a compatible action of the class group $\mathcal{C} \ell\left(\mathcal{O}_{n}\right)$. We would like to think at isogeny graphs as moving objects.

EDDIES

Given an order \mathcal{O}, we write $\mathcal{O}(M)=\mathbb{Z}+M \mathcal{O}$ - the order of index M, and $O_{n}=\mathcal{O}\left(\ell^{n}\right)$. Moreover, we denote the kernel

$$
U(\mathcal{O}, M)=\operatorname{ker}(\mathcal{C} \ell(\mathcal{O}(M)) \longrightarrow \mathcal{C} \ell(\mathcal{O}))
$$

which is the stabilizer of an isomorphism class of a curve oriented by \mathcal{O}.
An Eddy at E is the subgroup of ℓ-isogenies descending from E, equipped with the compatible action of $U\left(\mathcal{O}, \ell^{n}\right)$.

INTIALIZING THE LADCER

We characterize the initialization phase of ladder construction $=$ construction of q-isogenies of ℓ-isogeny chains for level one, $\Gamma=\mathrm{PSL}_{2}(\mathbb{Z})$.

The structure of oriented isogeny graphs (of level one) depends only on the class groups $\mathcal{C}\left(\mathcal{O}_{n}\right)$ (at level n) and the quotient maps $\mathcal{C}\left(\mathcal{O}_{n}\right) \rightarrow \mathcal{C} \ell\left(\mathcal{O}_{n-1}\right)$. The quotient maps determine the edges of the ℓ-isogeny graph (between level n and $n-1)$ and the class of the prime ideals over $q \neq \ell$ in $\mathcal{C}\left(\mathcal{O}_{n}\right)$ determine edges between vertices at level n.

We assume we are given a descending modular ℓ-isogeny chain, beginning with an initial modular point associated to a CM point with CM order \mathcal{O}_{K}. In order to initialize a q-ladder, at small distance m from the initial point, we can identify a reduced ideal class in $\mathcal{C} \ell\left(\mathcal{O}_{m}\right)$ which lies in the same class in $\mathcal{C} \ell\left(\mathcal{O}_{m}\right)$.

INTIIALIZIING THE LADDER - an exanple

Suppose $D_{K}=-3$, and $\ell=2$; we note that for all $n \geq 3$, that

$$
\mathcal{C} \ell\left(\mathcal{O}_{n}\right) \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2^{n-2} \mathbb{Z}
$$

and in particular, $\mathcal{C \ell}\left(\mathcal{O}_{n}\right)[2]$ consist of the classes of binary quadratic forms

$$
\left\{\langle 1,0,| D_{K}\left|\ell^{2(n-1)}\right\rangle,\langle | D_{K}\left|, 0, \ell^{2(n-1)}\right\rangle,\left\langle\ell^{2}, \ell^{2}, n_{1}\right\rangle,\left\langle\ell^{2}\right| D_{K}\left|, \ell^{2}\right| D_{K}\left|, n_{2}\right\rangle\right\} .
$$

where $\ell^{4}-4 \ell^{2} n_{1}=\ell^{4}\left|D_{K}\right|^{2}-4 \ell^{2}\left|D_{K}\right| n_{2}=-\ell^{2 n}\left|D_{K}\right|$, whence

$$
n_{1}=1+\ell^{2(n-2)}\left|D_{K}\right| \text { and } n_{2}=\left|D_{K}\right|+\ell^{2(n-2)} .
$$

For $n=3$, the form $\langle 12,12,7\rangle$ reduces to $\langle 7,2,7\rangle$ and the reduced representatives are:

$$
\{\langle 1,0,48\rangle,\langle 3,0,16\rangle,\langle 4,4,13\rangle,\langle 7,2,7\rangle\} .
$$

but for for $n \geq 4$, since $12<n_{2}$, the forms

$$
\left\{\left\langle 1,0,3 \cdot 4^{n-2}\right\rangle,\left\langle 3,0,4^{n-2}\right\rangle,\left\langle 4,4, n_{1}\right\rangle,\left\langle 12,12, n_{2}\right\rangle\right\}
$$

are reduced.

INTIIALIZING THE LADDER - apcctuaE

INTIALLZIING THE LADDER - atable

q	m	f_{m}	$\left[f_{m}\right]$	$\left[f_{m-1}\right]$
7	4	$\langle 7,4,28\rangle$	$[\langle 7,4,28\rangle]$	$[\langle 7,2,7\rangle]$
13	4	$\langle 13,8,16\rangle$	$[\langle 13,8,16\rangle]$	$[\langle 4,4,13\rangle]$
19	5	$\langle 19,14,43\rangle$	$[\langle 19,14,43\rangle]$	$[\langle 12,12,19\rangle]$
31	4	$\langle 31,10,7\rangle$	$[\langle 7,4,28\rangle]$	$[\langle 7,2,7\rangle]$
37	4	$\langle 37,34,13\rangle$	$[\langle 13,-8,16\rangle]$	$[\langle 4,4,13\rangle]$
43	5	$\langle 43,14,19\rangle$	$[\langle 19,-14,43\rangle]$	$[\langle 12,12,19\rangle]$
61	4	$\langle 61,56,16\rangle$	$[\langle 13,-8,16\rangle]$	$[\langle 4,4,13\rangle]$
67	6	$\langle 67,24,48\rangle$	$[\langle 48,-24,67\rangle]$	$[\langle 12,12,67\rangle]$
73	5	$\langle 73,40,16\rangle$	$[\langle 16,-8,49\rangle]$	$[\langle 4,4,49\rangle]$
79	4	$\langle 79,38,7\rangle$	$[\langle 7,4,28\rangle]$	$[\langle 7,2,7\rangle]$
97	5	$\langle 97,56,16\rangle$	$[\langle 16,8,49\rangle]$	$[\langle 4,4,49\rangle]$
103	4	$\langle 103,46,7\rangle$	$[\langle 7,-4,28\rangle]$	$[\langle 7,2,7\rangle]$
109	4	$\langle 109,70,13\rangle$	$[\langle 13,8,16\rangle]$	$[\langle 4,4,13\rangle]$
127	4	$\langle 127,116,28\rangle$	$[\langle 7,4,28\rangle]$	$[\langle 7,2,7\rangle]$

COMPLETING SOUARES OF ISOGENES

EXTENDING THE LADDER

Let $\ell=2$.

- The two ℓ-extensions are determined by a quadratic polynomial (deduced from y_{m-1}, y_{m-2} :

$$
\phi_{\ell}(y)=0
$$

We can solve for y_{m}, y_{m}^{\prime}, its roots.

- We have a degree $q+1$ polynomial $\phi_{q}(y)=0$ determined by x_{m} but we do note need to compute it. It suffices

$$
\phi_{q}(y) \bmod \phi_{\ell}(y)
$$

Indeed
$\Phi_{q}(x, y) \equiv \phi_{q}(y) \bmod \left(x-x_{m}, \phi_{\ell}(y)\right)$

ADDING LEVEL STRUCTURE

There are multiple reasons to add level structure to our construction:

- With an ℓ-level structure, the extension of ℓ-isogenies by modular correspondences allows one to automatically remove the dual isogeny (backtracking): there are ℓ rather than $\ell+1$ extensions.

ADDING LEVEL STRUCTURE

There are multiple reasons to add level structure to our construction:

- With an ℓ-level structure, the extension of ℓ-isogenies by modular correspondences allows one to automatically remove the dual isogeny (backtracking): there are ℓ rather than $\ell+1$ extensions.
- The modular isogeny chain is a potentially-non injective image of the isogeny chain.

ADDING LEVEL STRUCTURE

There are multiple reasons to add level structure to our construction:

- With an ℓ-level structure, the extension of ℓ-isogenies by modular correspondences allows one to automatically remove the dual isogeny (backtracking): there are ℓ rather than $\ell+1$ extensions.
- The modular isogeny chain is a potentially-non injective image of the isogeny chain.
- Rigidifying automorphisms should also shorten the distance to which we need to go in order to differentiate 2 points (two torsion of $\mathcal{C \ell}(\mathcal{O})$ may lift to non 2-torsion point in $\mathcal{C} \ell(\mathcal{O}, \Gamma)$).

ADDING LEVEL STRUCTURE

There are multiple reasons to add level structure to our construction:

- With an ℓ-level structure, the extension of ℓ-isogenies by modular correspondences allows one to automatically remove the dual isogeny (backtracking): there are ℓ rather than $\ell+1$ extensions.
- The modular isogeny chain is a potentially-non injective image of the isogeny chain.
- Rigidifying automorphisms should also shorten the distance to which we need to go in order to differentiate 2 points (two torsion of $\mathcal{C \ell}(\mathcal{O})$ may lift to non 2-torsion point in $\mathcal{C}(\mathcal{O}, \Gamma))$.
- q-modular polynomial of higher level are smaller.

ISOGENY GRAPHS WITH LEVEL STRUCTURE

For any congruence subgroup Γ of level coprime to the characteristic, we have a covering $G_{S}(E, \Gamma) \rightarrow G_{S}(E)$ whose vertices are pairs $(E, \Gamma(P, Q))$ of supersingular elliptic curves $/ \mathbb{F}_{p^{2}}$ and a Γ-level structure, and edges are isogenies $\psi:(E, \Gamma(P, Q)) \rightarrow\left(E^{\prime}, \Gamma\left(P^{\prime}, Q^{\prime}\right)\right)$ such that $\psi(\Gamma(P, Q))=\Gamma\left(P^{\prime}, Q^{\prime}\right)$.

Eg. $\Gamma_{0}(N)$-structures.
Vertices (E, G) with $G \leq E[N]$ of order N $\operatorname{End}(E, G) \quad=\quad\{\alpha \in \operatorname{End}(E) \mid \alpha(G) \subseteq G\}$ isomorphic to Eichler order.

On the left the $\Gamma_{0}(3)$ supersingular 2-isogeny graph.
$14 \leftrightarrow\left\{\left(E_{0}, G_{1}\right),\left(E_{0}, G_{2}\right),\left(E_{0}, G_{3}\right)\right\}$ where G_{1}, G_{2}, G_{3} maps to each other under the automorphism of E_{0}; they define 3 isogenies to E_{3}.

ORIENTED ISOGENY GRAPHS WITH LEVEL STRUCTURE

We will write $G_{S}\left(\mathrm{SS}_{K}(p, \Gamma)\right)$ or $G_{S}\left(\mathrm{SS}_{\mathcal{O}}(p, \Gamma)\right)$ for the supersingular isogeny graphs oriented by K with Γ-level structure.

Once again we have covers

$$
G_{S}\left(\mathrm{SS}_{K}(p, \Gamma)\right) \rightarrow G_{S}(E, K) \quad G_{S}\left(\mathrm{SS}_{\mathcal{O}}(p, \Gamma)\right) \rightarrow G_{S}(E, \mathcal{O})
$$

The action of ideals through isogenies lets us define an action on $G_{S}\left(\mathrm{SS}_{\mathcal{O}}(p, \Gamma)\right)$ by a ray class group $\mathcal{C \ell}(\mathcal{O}, \Gamma)$

$$
\begin{aligned}
\mathcal{C \ell}(\mathcal{O}, \Gamma) \times \mathrm{SS}_{\mathcal{O}}(p, \Gamma) & \longrightarrow \mathrm{SS}(p, \Gamma) \\
\quad([\mathfrak{a}],(E, \Gamma(P, Q))) & \longrightarrow\left(\phi_{\mathfrak{a}}(E), \Gamma\left(\phi_{\mathfrak{a}}(P), \phi_{\mathfrak{a}}(Q)\right)\right)
\end{aligned}
$$

SOME MODULAR CURVES OF INTEREST FOR OSIDH

WEBER MODULAR FUNCTIONS

Introduced by H. Weber, they are

$$
\begin{gathered}
\mathfrak{f}(\tau)=\zeta_{48}^{-1} \frac{\eta\left(\frac{\tau+1}{2}\right)}{\eta(\tau)}=q^{-\frac{1}{48}} \prod_{n=1}^{+\infty}\left(1+q^{n-\frac{1}{2}}\right) \\
\mathfrak{f}_{1}(\tau)=\frac{\eta\left(\frac{\tau}{2}\right)}{\eta(\tau)}=q^{-\frac{1}{48}} \prod_{n=1}^{+\infty}\left(1-q^{n-\frac{1}{2}}\right) \\
\mathfrak{f}_{2}(\tau)=\sqrt{2} \frac{\eta(2 \tau)}{\eta(\tau)}=\sqrt{2} q^{\frac{1}{24}} \prod_{n=1}^{+\infty}\left(1+q^{n}\right)
\end{gathered}
$$

Historically, \mathfrak{f}_{2} was the first to be studied by Weber, who eventually introduced the others such that

$$
\left(X+\mathfrak{f}^{8}\right)\left(X-\mathfrak{f}_{1}^{8}\right)\left(X-\mathfrak{f}_{2}^{8}\right)=X^{3}-\gamma_{2} X+16
$$

WEBER MODULAR RUNCTIONS - properties

The previous relation $\left(X+f^{8}\right)\left(X-f_{1}^{8}\right)\left(X-f_{2}^{8}\right)=X^{3}-\gamma_{2} X+16$ yields

- $\mathfrak{f}^{8}=\mathfrak{f}_{1}^{8}+\mathrm{f}_{2}^{8}$

WEBER MODULAR RUNCTIONS - properties

The previous relation $\left(X+f^{8}\right)\left(X-f_{1}^{8}\right)\left(X-f_{2}^{8}\right)=X^{3}-\gamma_{2} X+16$ yields

- $\mathfrak{f}^{8}=\mathfrak{f}_{1}^{8}+\mathfrak{f}_{2}^{8}$
- $\mathfrak{f}_{1}(2 \tau) \mathfrak{f}_{2}(\tau)=\mathfrak{f}(\tau) \mathfrak{f}_{1}(\tau) \mathfrak{f}_{2}(\tau)=\sqrt{2}$

WEBER MODULAR RUNCTIONS - properties

The previous relation $\left(X+f^{8}\right)\left(X-f_{1}^{8}\right)\left(X-f_{2}^{8}\right)=X^{3}-\gamma_{2} X+16$ yields

- $\mathfrak{f}^{8}=\mathfrak{f}_{1}^{8}+\mathfrak{f}_{2}^{8}$
- $\mathfrak{f}_{1}(2 \tau) \mathfrak{f}_{2}(\tau)=\mathfrak{f}(\tau) \mathfrak{f}_{1}(\tau) \mathfrak{f}_{2}(\tau)=\sqrt{2}$
which gives
- $\zeta_{48}^{-1} \eta\left(\frac{\tau+1}{2}\right) \eta\left(\frac{\tau}{2}\right) \eta(2 \tau)=\eta(\tau)^{3}$

WEBER MODULAR RUNCTIONS - properties

The previous relation $\left(X+f^{8}\right)\left(X-f_{1}^{8}\right)\left(X-f_{2}^{8}\right)=X^{3}-\gamma_{2} X+16$ yields

- $\mathfrak{f}^{8}=\mathfrak{f}_{1}^{8}+\mathfrak{f}_{2}^{8}$
- $\mathfrak{f}_{1}(2 \tau) \mathfrak{f}_{2}(\tau)=\mathfrak{f}(\tau) \mathfrak{f}_{1}(\tau) \mathfrak{f}_{2}(\tau)=\sqrt{2}$
which gives
- $\zeta_{48}^{-1} \eta\left(\frac{\tau+1}{2}\right) \eta\left(\frac{\tau}{2}\right) \eta(2 \tau)=\eta(\tau)^{3}$

They have transformation formulæ

- $\left(\mathfrak{f}, \mathfrak{f}_{1}, \mathfrak{f}_{2}\right) \circ S=\left(\mathfrak{f}, \mathfrak{f}_{2}, \mathfrak{f}_{1}\right)$
- $\left(\mathfrak{f}, \mathfrak{f}_{1}, \mathfrak{f}_{2}\right) \circ T=\left(\zeta_{48}^{-1} \mathfrak{f}_{1}, \zeta_{48}^{-1} \mathfrak{f}, \zeta_{24} \mathfrak{f}_{2}\right)$

WEBER MODULAR RUNCTIONS - properties

The previous relation $\left(X+f^{8}\right)\left(X-f_{1}^{8}\right)\left(X-f_{2}^{8}\right)=X^{3}-\gamma_{2} X+16$ yields

- $\mathfrak{f}^{8}=f_{1}^{8}+f_{2}^{8}$
- $\mathfrak{f}_{1}(2 \tau) \mathfrak{f}_{2}(\tau)=\mathfrak{f}(\tau) \mathfrak{f}_{1}(\tau) \mathfrak{f}_{2}(\tau)=\sqrt{2}$
which gives
- $\zeta_{48}^{-1} \eta\left(\frac{\tau+1}{2}\right) \eta\left(\frac{\tau}{2}\right) \eta(2 \tau)=\eta(\tau)^{3}$

They have transformation formulæ

- $\left(\mathfrak{f}, \mathfrak{f}_{1}, \mathfrak{f}_{2}\right) \circ S=\left(\mathfrak{f}, \mathfrak{f}_{2}, \mathfrak{f}_{1}\right)$
- $\left(\mathfrak{f}, \mathfrak{f}_{1}, \mathfrak{f}_{2}\right) \circ T=\left(\zeta_{48}^{-1} \mathfrak{f}_{1}, \zeta_{48}^{-1} \mathfrak{f}, \zeta_{24} \mathfrak{f}_{2}\right)$
and relations with the j-invariant
- $j=\frac{\left(\mathfrak{f}^{24}-16\right)^{3}}{\mathfrak{f}^{24}}=\frac{\left(\mathfrak{f}_{1}^{24}+16\right)^{3}}{\mathfrak{f}_{1}^{24}}=\frac{\left(\mathfrak{f}_{2}^{24}+16\right)^{3}}{\mathfrak{f}_{2}^{24}}$

WEBER MODULAR POLYNOMALS

$\mathfrak{f}(\tau)$ is a modular function of level 48 giving a degree 72 cover of the j-line. The modular polynomials with respect to f are the new (Weber) integral polynomials $\Phi_{q}(x, y)$ such that

$$
\Phi_{q}(\mathfrak{f}(\tau), \mathfrak{f}(q \tau))=0
$$

Division Polynomials

Asymptotically, modular polynomials have q^{2} monomials, but the symmetry $\Phi_{q}\left(\zeta_{24} x, \zeta_{24}^{q} y\right)=\zeta_{24}^{q+1}(x, y)$ yields a great sparsness:

$$
\begin{aligned}
& \Phi_{5}(x, y)=x^{6}-x^{5} y^{5}+4 x y+y^{6} \\
& \Phi_{7}(x, y)=x^{8}-x^{7} y^{7}+7 x^{4} y^{4}-8 x y+y^{8} \\
& \Phi_{11}(x, y)=x^{12}-x^{11} y^{11}+11 x^{9} y^{9}-44 x^{7} y^{7}+88 x^{5} y^{5}-88 x^{3} y^{3}+32 x y+y^{12}
\end{aligned}
$$

WEBER MODULAR POLYNOMALS - furiter reouctons

For $\ell=2$ or $\ell=3$, the 48 -level structure gives the modular polynomials $\Phi_{2}(x, y)$ and $\Phi_{3}(x, y)$ a particular form.

- We descend the 2 -level structure by setting $t=-\mathfrak{f}^{8}$, so that $j=\left(\frac{t^{3}+16}{t}\right)^{3}$. We obtain the modular polynomial:

$$
\Psi_{2}(x, y)=\left(x^{2}-y\right) y+16 x
$$

and the Weber modular polynomial $\Phi_{2}(x, y)=-\Psi_{2}\left(-x^{8},-y^{8}\right)$ remains irreducible

- A similar descent of the 3 -level to the function $r=\mathfrak{f}^{3}$, gives the modular polynomial

$$
\Psi_{3}(x, y)=x^{4}-x^{3} y^{3}+8 x y+y^{4},
$$

such that $\Psi_{3}(r(\tau), r(3 \tau))=0$, for which $\Phi_{3}(x, y)=\Psi_{3}\left(x^{3}, y^{3}\right)$ is irreducible.

WEBER CURVES

We fix the normalization $\left(\mathfrak{u}_{0}, \mathfrak{u}_{1}, \mathfrak{u}_{2}\right)=\left(\mathfrak{f}, \zeta_{16} \mathfrak{f}_{1}, \zeta_{16}^{-1} \mathfrak{f}_{2}\right)$.
Notice that $\left\{\zeta_{24}^{j} \mathfrak{u}_{i} \mid j \in \mathbb{Z} / 24 \mathbb{Z}\right\}$ are the 72 roots of

$$
\left(X^{24}-16\right)^{3}-j(q) X \in \mathbb{Q}\left(\zeta_{24}\right)\left[\left[q^{1 / 24}\right]\right]
$$

The map determined by the normalized Weber functions $\left(\mathfrak{u}_{0}^{m}: \mathfrak{u}_{1}^{m}: \mathfrak{u}_{2}^{m}: 1\right)$ determines a Weber modular curve $\mathcal{W}_{3 n}$ in \mathbb{P}^{3}

$$
\mathcal{W}_{3 n}:\left\{\begin{array}{l}
X_{0}^{n}+X_{1}^{n}+X_{2}^{n}=0 \\
X_{0} X_{1} X_{2}=\sqrt{2}^{m} X_{3}^{3}
\end{array}\right.
$$

for m and n such that $m n=8$
The quotient Weber curve \mathcal{W}_{n} is defined as the image of $\left(\mathfrak{u}_{0}^{3 m}: \mathfrak{u}_{1}^{3 m}: \mathfrak{u}_{2}^{3 m}: 1\right)$:

$$
\mathcal{W}_{n}:\left\{\begin{array}{l}
X_{0}^{n}+X_{1}^{n}+X_{2}^{n}=48 X_{3}^{n} \\
X_{0} X_{1} X_{2}=\sqrt{2}^{3 m} X_{3}^{3}
\end{array}\right.
$$

These curves are equipped with maps $\mathcal{W}_{m n} \rightarrow \mathcal{W}_{n}$ for each product $m n \mid 24$.

WEBER MODULAR CURVES

To each factorization $m n=24$, the Weber curve \mathcal{W}_{n} in \mathbb{P}^{3}, defined by the triple of Weber functions $\left(\mathfrak{u}_{0}^{m}, \mathfrak{u}_{1}^{m}, \mathfrak{u}_{2}^{m}\right)$, comes equipped with an action of $\mathrm{PSL}_{2}(\mathbb{Z})$.

Weber Modular Curves

We denote the kernel of the action by Γ_{n}, identifying the Weber curves with the modular curve $X\left(\Gamma_{n}\right)$.

WEBER MODULAR GROUPS

The $\mathrm{PSL}_{2}(\mathbb{Z})$ action on Weber functions induces a representation in $\mathrm{GL}_{3}\left(\mathbb{Q}\left(\zeta_{n}\right)\right)$

$$
S \longmapsto\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & \bar{\zeta}_{8}{ }^{m} \\
0 & \zeta_{8}^{m} & 0
\end{array}\right) \quad T \longmapsto\left(\begin{array}{ccc}
0 & \zeta_{24}^{m} & 0 \\
\zeta_{24}{ }^{m} & 0 & 0 \\
0 & 0 & \zeta_{24}^{m}
\end{array}\right)
$$

Its kernel Γ_{n} is a normal congruence subgroup of $\mathrm{PSL}_{2}(\mathbb{Z})$.
Noting that $\Gamma_{1} \subset \Gamma_{3} \cap \Gamma_{8}=\Gamma_{24}$, we reduce to determining Γ_{3} and the chain $\Gamma_{1} \subset \Gamma_{2} \subset \Gamma_{4} \subset \Gamma_{8}$.

Proposition

- The Weber kernel group Γ_{1} equals $\Gamma(2)$ and $\mathcal{W}_{1} \cong X(2)$.
- The Weber kernel group Γ_{3} equals $\Gamma(2) \cap \Gamma_{n s}^{+}(3)$, and for each n dividing 8

$$
\Gamma_{3 n}=\Gamma_{n} \cap \Gamma_{n s}^{+}(3) .
$$

- The Weber kernel group Γ_{2} equals $\Gamma(4)$ and $\mathcal{W}_{2}=X(4)$.
- The Weber kernel group Γ_{4} equals $\Gamma_{s}(8)$ and $\mathcal{W}_{4}=X_{s}(8)$.

WEBER MODULAR GROUPS - тнеGROUP Γ_{8}

$$
\Gamma(16) \subset \Gamma_{8} \subset \Gamma_{s}(8)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): b \equiv c \equiv 0 \bmod 8\right\}
$$

Proposition

The Weber kernel subgroup Γ_{8} is generated by $\Gamma(16)$ and $\left(\begin{array}{cc}13 & 8 \\ 8 & 5\end{array}\right)$

SUPPERSMGULAR FELIDS OF DEFINTIONS

Theorem

For any positive integer N, then the supersingular invariants on the modular curve $X_{0}(N)$ are defined over $\mathbb{F}_{p^{2}}$, and if $p \equiv \pm 1 \bmod N$, then the supersingular invariants also split over $\mathbb{F}_{p^{2}}$ on $X_{1}(N)$.

As a consequence, the split Cartan modular curve $X_{s}(N)$, defined by the congruence subgroup $\Gamma_{s}(N)$ also splits the supersingular moduli for every N. Then, if $p \equiv \pm 1 \bmod N$, then the supersingular invariants on the modular curve $X(N)$ are defined over $\mathbb{F}_{p^{2}}$.

Theorem

The supersingular Weber invariants on \mathcal{W}_{24} are defined over $\mathbb{F}_{p^{2}}$.

$$
\begin{gathered}
X(16,8,16) \longrightarrow X(8) \\
\left.\left.\begin{array}{c}
\left\langle\binom{ 13}{8}\right. \\
5
\end{array}\right)\right\rangle \mid \\
\underset{\mathcal{W}_{8}}{\downarrow} \longrightarrow X_{s}(8)
\end{gathered}
$$

WEBER INITIALIZATIONS

Let u be a supersingular value of the Weber function,

$$
r=u^{3} \quad t=-u^{8} \quad s=t^{3}
$$

along the chain $\mathcal{W}_{8} \rightarrow Y \rightarrow X_{0}(2) \rightarrow X(1)$.
The elliptic curves associated to Weber invariants is a fiber in the family:

$$
y^{2}+x y=x^{3}-\frac{1}{u^{24}-64} x
$$

over u on the Weber curve.
The OSIDH protocol is initialized with oriented chains from an effective CM order. The initial values with which to build the public ℓ-isogeny chains are

D	j_{0}	s_{0}	t_{0}	D	j_{1}	s_{1}	t_{1}
-3	0	-2^{4}	$-(\sqrt[3]{2})^{4}$	-12	$2^{4} 15^{3}$	-2^{8}	$-(\sqrt[3]{2})^{8}$
-4	12^{3}	2^{3}	2	-16	66^{3}	2^{9}	2^{3}
-7	-15^{3}	-1	-1	-28	255^{3}	-2^{12}	-2^{4}
-8	20^{3}	2^{6}	2^{2}	-32	j_{1}	t_{1}^{3}	$2^{3}(\sqrt{2}+1)$

WEBER INTIAALZATIONS - diccalunant -7

Endomorphism ring is small: generated by an endomorphism of degree 2 We avoiding any pathologies associated with the extra automorphisms.

- $t_{0}=-1$ and c root of $x^{2}-x+2$.
- c^{4} and \bar{c}^{4} also t-values over $j=-15^{3}$.
- $\Psi_{2}\left(-1, c^{4}\right)=\Psi_{2}\left(-1, \bar{c}^{4}\right)=0$, the two extensions correspond to the horizontal 2 -isogenies.
- $\Psi_{2}\left(c^{4}, c^{4}\right)=\Psi_{2}\left(c^{4},-2^{4}\right)=0$: the former enters a cycle the latter induces a descending isogeny.

Initialization: $\left(t_{0}, t_{1}, t_{2}, \ldots\right)$ beginning with $\left(-1, c^{4},-2^{4}, \ldots\right)$.
Successive solutions to $\Psi_{2}\left(t_{i}, t_{i+1}\right)=0$ are necessarily descending.
Extension: random choice of root t_{i+1} of $\Psi_{2}\left(t_{i}, x\right)$.

WEBER INTIALLZATIONS - diccrimnant -4

- t-invariants over $j=12^{3}$ fall in two orbits of points, $\left\{2,2 \omega, 2 \omega^{2}\right\}$ of multiplicity 2 , and $\left\{-4,-4 \omega,-4 \omega^{2}\right\}$ of multiplicity 1 .
- These points at the surface are linked by a 2 -isogeny and to 2-depth 1 , to $t=8$.
- $\Psi_{2}\left(\omega x, \omega^{2} y\right)=\omega \Psi_{2}(x, y)$: the choice of representative in the orbit gives rise to one of three distinct components of the 2 -isogeny graph.

> Initialization: $\left(t_{0}, t_{1}, t_{2}, \ldots\right)=(2,8,8 c, \ldots)$ where c is a root of $x^{2}-8 x-2$. Extension: random selection of a root t_{i+1} of $\Psi_{2}\left(t_{i}, x\right)$.

The full 2 -isogeny graph has ascending edges from the depth one to $t_{0}=2$ If an isogeny is descending its only extension to a 2-isogeny chain is descending

WEBER INTIALLZATIONS - diccramnant -3

- $t_{0}=-(\sqrt[3]{2})^{4}=-2 \sqrt[3]{2}$.
- $\left\{t_{0}, t_{0} \omega, t_{0} \omega^{2}\right\}$ are t-values over $j=0$, each of multiplicity 3
- $t_{1}=-t_{0}^{2}$, and
$\Psi_{2}\left(t_{0}, t_{1} \omega\right)=\Psi_{2}\left(t_{0}, t_{1} \omega^{2}\right)=0$,

Since 2 is inert, every path from t_{0} is descending, so we may initialize the 2 -isogeny chain with $\left(t_{0}, t_{1} \omega\right)$.

There are additional t-invariants at each depth >0 which admit ascending and descending isogenies.
Any descending isogenies must rejoin this graph of descending isogenies from the surface.

THANK YOU FOR YOUR ATTENTION

