MARSEILLE, 19 MAY 2022

A MODULAR APPROACH TO OSIDH

LEONARDO COLÒ & DAVID KOHEL Institut de Mathématiques de Marseille

Séminaire ATI - Arithmétique et Théorie de l'Information

ISOGENY GRAPHS

Definition

L.COLÒ M

Given an elliptic curve E over k, and a finite set of primes S, we can associate an isogeny graph G=(E,S)

- whose vertices are elliptic curves isogenous to E over \bar{k} , and
- whose edges are isogenies of degree $\ell \in S$.

The vertices are defined up to \bar{k} -isomorphism and the edges from a given vertex are defined up to a \bar{k} -isomorphism of the codomain.

If $S = \{\ell\}$, then we call G an ℓ -isogeny graph, G_{ℓ} .

For an elliptic curve E/k and prime $\ell \neq char(k)$, the full ℓ -torsion subgroup is a 2-dimensional \mathbb{F}_{ℓ} -vector space:

$$E[\ell] = \left\{ P \in E[\bar{k}] \, \middle| \, \ell P = O \right\} \simeq \mathbb{F}_{\ell}^2$$

Consequently, the set of cyclic subgroups is in bijection with $\mathbb{P}^1(\mathbb{F}_{\ell})$, which in turn are in bijection with the set of ℓ -isogenies from *E*.

Thus, the ℓ -isogeny graph of E is $(\ell + 1)$ -regular (as a directed multigraph).

SUPERSINGULAR ISOGENY GRAPHS

The supersingular isogeny graphs are remarkable because the vertex sets are finite : there are $(p+1)/12+\epsilon_p$ curves. Moreover

- every supersingular elliptic curve can be defined over \mathbb{F}_{p^2} ;
- ▶ all l-isogenies are defined over \mathbb{F}_{p^2} ;
- every endomorphism of E is defined over \mathbb{F}_{p^2} .

The lack of a commutative group acting on the set of supersingular elliptic curves/ \mathbb{F}_{p^2} makes the isogeny graph more complicated.

SUPERSINGULAR ISOGENY GRAPHS - SPECIAL VERTICES

Supersingular curves with *j*-invariants 0 and 1728 have extra automorphisms, besides $[\pm 1]$.

▶
$$E_{1728}$$
 is supersingular if $p \equiv 3 \mod 4$

$$\mathsf{Aut}(E_{1728}) = \{ [\pm 1], [\pm i] \} \qquad \mathsf{End}(E_{1728}) = \mathbb{Z} \langle [i], \frac{1 + \pi_p}{2} \rangle$$

where [i](x,y)=(-x,iy) for $i^2=-1$ in \mathbb{F}_{p^2} and $\pi_p(x,y)=(x^p,y^p)$ is Frobenius.

• E_0 is supersingular if $p \equiv 2 \mod 3$

$$\operatorname{Aut}(E_0) = \left\{ [\pm 1], [\pm \zeta_3], [\pm \zeta_3^2] \right\} \qquad \operatorname{End}(E_0) = \mathbb{Z} \langle [\zeta_3], \pi_p \rangle$$

where $[\zeta_3](x,y)=(\zeta_3x,y)$ for $\zeta_3^2+\zeta_3+1=0$ in $\mathbb{F}_{p^2}.$

Because of these extra automorphisms, supersingular isogeny graphs may fail to really be undirected graphs.

Since this issue occurs only at neighbours of E_0 and $E_{\rm 1728},$ we usually forget this subtlety.

ORIENTATIONS

Let \mathcal{O} be an order in an imaginary quadratic field K. An \mathcal{O} -orientation on a supersingular elliptic curve E is an embedding $\iota : \mathcal{O} \hookrightarrow \operatorname{End}(E)$, and a *K*-orientation is an embedding $\iota : K \hookrightarrow \operatorname{End}^0(E) = \operatorname{End}(E) \otimes_{\mathbb{Z}} \mathbb{Q}$. An \mathcal{O} -orientation is primitive if $\mathcal{O} \simeq \operatorname{End}(E) \cap \iota(K)$.

Theorem

The category of *K*-oriented supersingular elliptic curves (E, ι) , whose morphisms are isogenies commuting with the *K*-orientations, is equivalent to the category of elliptic curves with CM by *K*.

Let $\phi: E \to F$ be an isogeny of degree ℓ . A *K*-orientation $\iota: K \hookrightarrow \operatorname{End}^0(E)$ determines a *K*-orientation $\phi_*(\iota): K \hookrightarrow \operatorname{End}^0(F)$ on *F*, defined by

$$\phi_*(\iota)(\alpha) = \frac{1}{\ell} \phi \circ \iota(\alpha) \circ \hat{\phi}.$$

Conversely, given *K*-oriented elliptic curves (E, ι_E) and (F, ι_F) we say that an isogeny $\phi : E \to F$ is *K*-oriented if $\phi_*(\iota_E) = \iota_F$, i.e., if the orientation on *F* is induced by ϕ .

ORIENTED ISOGENY GRAPHS - VERTICES & EDGES

Two *K*-oriented curves are isomorphic if and ony if there exists a *K*-oriented isomorphism between them. We denote $G_S(E, K)$ the *S*-isogeny graph of *K*-oriented supersingular elliptic curves over \mathbb{F}_{p^2} whose vertices are isomorphism classes of *K*-oriented supersingular elliptic curves $/\mathbb{F}_{p^2}$ and whose edges are equivalence classes of *K*-oriented isogenies of degree in *S*.

Proposition

The only vertices of $G_\ell(E,K)$ with extra automorphisms are (E,ι) where either

- $\blacktriangleright \ E = E_{1728} \text{ and } \iota(i) = [\pm i] \text{ or }$
- $E = E_0$ and $\iota(\zeta_3) = [\pm \zeta_3]$.

Then (E, ι) has out-degree $\ell + 1$, except at the oriented curves with extra automorphisms, in which case thise degree is $2(\ell + 1 - r_{\ell})/|\operatorname{Aut}(E)| + r_{\ell}$ where $|\operatorname{Aut}(E)|r_{\ell}$ is the number of elements of \mathcal{O} of norm ℓ .

Arpin, S. and Chen, M. and Lauter, K.E. and Scheidler, R. and Stange, K.E. and Tran, H.T.N. -Orientations and cycles in supersingular isogeny graphs

ORIENTED ISOGENY GRAPHS - STRUCTURE

The orientation by a quadratic imaginary field gives to supersingular isogeny graphs the rigid structure of a volcano. It also differentiates vertices in the descending paths from the crater, determining an infinite graph.

 $G_{\ell}(E,K)$ consists of connected components, each of which is a volcano.

- ► The crater consists of K-oriented elliptic curves which are O-primitive for some fixed ℓ-fundamental order O of K.
- Oriented curves at depth k are primitively oriented by orders of index ℓ^k in \mathcal{O} .
- ► We recover the standar terminology for oriented isogenies:
 - If $\mathcal{O} = \mathcal{O}'$ we say that ϕ is horizontal;
 - If $\mathcal{O} \supseteq \mathcal{O}'$ we say that ϕ is ascending;
 - If $\mathcal{O} \subsetneq \mathcal{O}'$ we say that ϕ is descending.

ORIENTED ISOGENY GRAPHS - AN EXAMPLE

Let E_0/\mathbb{F}_{71} be the supersingular elliptic curve with j(E) = 0, oriented by the order $\mathcal{O}_K = \mathbb{Z}[\omega]$, where $\omega^2 + \omega + 1 = 0$. The unoriented 2-isogeny graph is the finite graph on the left.

The orientation by $K = \mathbb{Q}[\omega]$ differentiates vertices in the descending paths from E_0 , determining an infinite graph shown here to depth 4:

ORIENTED ISOGENY GRAPHS - YET ANOTHER EXAMPLE

We let again p = 71 and we consider the isogeny graph oriented by $\mathbb{Z}[\omega_{79}]$ where ω_{79} generates the ring of integers of $\mathbb{Q}(\sqrt{-79})$.

ISOGENY CHAINS

Definition

An $\ell\text{-isogeny}$ chain of length n from E_0 to E is a sequence of isogenies of degree $\ell\text{:}$

$$E_0 \xrightarrow{\phi_0} E_1 \xrightarrow{\phi_1} E_2 \xrightarrow{\phi_2} \dots \xrightarrow{\phi_{n-1}} E_n = E.$$

The ℓ -isogeny chain is without backtracking if $\ker(\phi_{i+1} \circ \phi_i) \neq E_i[\ell], \forall i$. The isogeny chain is descending (or ascending, or horizontal) if each ϕ_i is descending (or ascending, or horizontal, respectively).

The dual isogeny of ϕ_i is the only isogeny ϕ_{i+1} satisfying $\ker(\phi_{i+1} \circ \phi_i) = E_i[\ell]$. Thus, an isogeny chain is without backtracking if and only if the composition of two consecutive isogenies is cyclic.

Lemma

The composition of the isogenies in an ℓ -isogeny chain is cyclic if and only if the ℓ -isogeny chain is without backtracking.

CLASS GROUP ACTION

- ► $SS(p) = {$ supersingular elliptic curves over $\overline{\mathbb{F}}_p$ up to isomorphism $}.$
- ► $SS_{\mathcal{O}}(p) = \{\mathcal{O} \text{-oriented s.s. elliptic curves over } \overline{\mathbb{F}}_p \text{ up to } K \text{-isomorphism} \}.$
- ▶ $SS^{pr}_{\mathcal{O}}(p)$ =subset of primitive \mathcal{O} -oriented curves.

The set $\mathbf{SS}_{\mathcal{O}}(p)$ admits a transitive group action:

$$\mathcal{C}\!\ell(\mathcal{O})\times\mathsf{SS}_{\mathcal{O}}(p) \ \longrightarrow \ \mathsf{SS}_{\mathcal{O}}(p) \qquad ([\mathfrak{a}],E) \ \longmapsto \ \mathfrak{ss}_{\mathcal{O}}(p) \qquad ([\mathfrak{a}],E) \ \longmapsto \ \mathfrak{ss}_{\mathcal{O}}(p) \ \mathfrak{ss}_{\mathcal{O}}($$

Proposition

The class group $\mathcal{C}\!\ell(\mathcal{O})$ acts faithfully and transitively on the set of \mathcal{O} -isomorphism classes of primitive \mathcal{O} -oriented elliptic curves.

In particular, for fixed primitive \mathcal{O} -oriented *E*, we obtain a bijection of sets:

$$\mathcal{C}\!\ell(\mathcal{O}) \longrightarrow \mathsf{SS}^{pr}_{\mathcal{O}}(p) \qquad [\mathfrak{a}] \longmapsto [\mathfrak{a}] \cdot E$$

EFFECTIVE CLASS GROUP ACTION

L.COLÒ M

The theory of complex multiplication relates the geometry of isogenies to the arithmetic Galois action on elliptic curves in characteristic zero, mediated by the map of $\mathcal{C}\!\ell(\mathcal{O})$ into each.

Over a finite field, we use the geometric action by isogenies to recover the class group action. In particular we describe the action of $\mathcal{C}\ell(\mathcal{O})$ on ℓ -isogeny chains in the *whirlpool*.

Suppose that (E_i,ϕ_i) is a descending $\ell\text{-isogeny}$ chain with

$$\mathcal{O}_K \subseteq \operatorname{End}(E_0), \dots, \mathcal{O} = \mathbb{Z} + \ell^n \mathcal{O}_K \subseteq \operatorname{End}(E_n).$$

If \mathfrak{q} is a split prime in \mathcal{O}_K over $q \neq \ell, p,$ then the isogeny

$$\psi_0: E_0 \to F_0 = E_0/E_0[\mathfrak{q}]$$

can be extended to the $\ell\text{-isogeny}$ chain by pushing forward the cyclic group $C_0=E_0[\mathfrak{q}]$:

$$C_0 = E_0[\mathfrak{q}], C_1 = \phi_0(C_0), \dots, C_n = \phi_{n-1}(C_{n-1}),$$

and defining $F_i = E_i/C_i$.

LADDERS

This construction motivates the following definition.

Definition

An ℓ -ladder of length n and degree q is a commutative diagram of ℓ -isogeny chains (E_i, ϕ_i) , (F_i, ϕ'_i) of length n connected by q-isogenies $\psi_i : E_i \to F_i$

If ψ_0 is as above $((\psi_0) = E_0[\mathfrak{q}])$, the ladder encodes the action of $\mathcal{C}\ell(\mathcal{O})$ on ℓ -isogeny chains, and consequently on elliptic curves at depth n.

CLOUDS

In order to discuss the local neighborhood of a graph, we introduce the notion of an ℓ -isogeny cloud around E: this is a subgraph of $G_{\ell}(E)$, whose paths from E extend to length r.

VORTICES & WHIRLPOOLS

We define a vortex to be the ℓ -isogeny subgraph $G_{\ell}(E, \mathcal{O})$ of $G_{\ell}(E, K)$ whose vertices are isomorphism classes of \mathcal{O} -oriented elliptic curves with ℓ -maximal endomorphism ring, equipped with an action of $\mathcal{C}\ell(\mathcal{O})$.

A *whirlpool* will be a complete isogeny volcano (the union of the subgraphs $G_\ell(E,\mathcal{O}_n)$) acted on by a compatible action of the class group $\mathcal{C}\!\ell(\mathcal{O}_n)$. We would like to think at isogeny graphs as moving objects.

EDDIES

Given an order \mathcal{O} , we write $\mathcal{O}(M) = \mathbb{Z} + M\mathcal{O}$ - the order of index M, and $O_n = \mathcal{O}(\ell^n)$. Moreover, we denote the kernel

$$U(\mathcal{O},M) = \ker(\mathcal{C}\!\ell(\mathcal{O}(M)) \longrightarrow \mathcal{C}\!\ell(\mathcal{O}))$$

which is the stabilizer of an isomorphism class of a curve oriented by \mathcal{O} .

An Eddy at *E* is the subgroup of ℓ -isogenies descending from *E*, equipped with the compatible action of $U(\mathcal{O}, \ell^n)$.

INITIALIZING THE LADDER

We characterize the initialization phase of ladder construction = construction of q-isogenies of ℓ -isogeny chains for level one, $\Gamma = \mathsf{PSL}_2(\mathbb{Z})$.

The structure of oriented isogeny graphs (of level one) depends only on the class groups $\mathcal{C}\!\ell(\mathcal{O}_n)$ (at level n) and the quotient maps $\mathcal{C}\!\ell(\mathcal{O}_n) \to \mathcal{C}\!\ell(\mathcal{O}_{n-1})$. The quotient maps determine the edges of the ℓ -isogeny graph (between level n and n-1) and the class of the prime ideals over $q \neq \ell$ in $\mathcal{C}\!\ell(\mathcal{O}_n)$ determine edges between vertices at level n.

We assume we are given a descending modular ℓ -isogeny chain, beginning with an initial modular point associated to a CM point with CM order \mathcal{O}_K . In order to initialize a *q*-ladder, at small distance *m* from the initial point, we can identify a reduced ideal class in $\mathcal{C}\ell(\mathcal{O}_m)$ which lies in the same class in $\mathcal{C}\ell(\mathcal{O}_m)$.

INITIALIZING THE LADDER - AN EXAMPLE Suppose $D_K = -3$, and $\ell = 2$; we note that for all $n \ge 3$, that

 $\mathcal{C}\!\ell(\mathcal{O}_n)\cong \mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/2^{n-2}\mathbb{Z}$

and in particular, $\mathcal{C}\!\ell(\mathcal{O}_n)[2]$ consist of the classes of binary quadratic forms

$$\begin{split} \{ \langle 1,0,|D_K|\ell^{2(n-1)}\rangle, \langle |D_K|,0,\ell^{2(n-1)}\rangle, \langle \ell^2,\ell^2,n_1\rangle, \langle \ell^2|D_K|,\ell^2|D_K|,n_2\rangle \}. \end{split}$$
 where $\ell^4 - 4\ell^2n_1 = \ell^4|D_K|^2 - 4\ell^2|D_K|n_2 = -\ell^{2n}|D_K|$, whence $n_1 = 1 + \ell^{2(n-2)}|D_K| \text{ and } n_2 = |D_K| + \ell^{2(n-2)}. \end{split}$

For n = 3, the form $\langle 12, 12, 7 \rangle$ reduces to $\langle 7, 2, 7 \rangle$ and the reduced representatives are:

 $\{\langle 1, 0, 48 \rangle, \langle 3, 0, 16 \rangle, \langle 4, 4, 13 \rangle, \langle 7, 2, 7 \rangle\}.$

but for for $n \ge 4$, since $12 < n_2$, the forms

$$\{\langle 1,0,3\cdot 4^{n-2}\rangle,\langle 3,0,4^{n-2}\rangle,\langle 4,4,n_1\rangle,\langle 12,12,n_2\rangle\}$$

are reduced.

MODULAR OSIDH | Séminaire ATI - 19 May 2022

INITIALIZING THE LADDER - A PICTURE

INITIALIZING THE LADDER - A TABLE

q	m	f_m	$[f_m]$	$[f_{m-1}]$
7	4	$\langle 7, 4, 28 \rangle$	$[\langle 7, 4, 28 \rangle]$	$[\langle 7, 2, 7 \rangle]$
13	4	$\langle 13, 8, 16 \rangle$	$[\langle 13, 8, 16 \rangle]$	$[\langle 4, 4, 13 \rangle]$
19	5	$\langle 19, 14, 43 \rangle$	$[\langle 19, 14, 43 \rangle]$	$[\langle 12, 12, 19 \rangle]$
31	4	$\langle 31, 10, 7 \rangle$	$[\langle 7, 4, 28 \rangle]$	$[\langle 7, 2, 7 \rangle]$
37	4	$\langle 37, 34, 13 \rangle$	$[\langle 13, -8, 16 \rangle]$	$[\langle 4, 4, 13 \rangle]$
43	5	$\langle 43, 14, 19 \rangle$	$[\langle 19, -14, 43 \rangle]$	$[\langle 12, 12, 19 \rangle]$
61	4	$\langle 61, 56, 16 \rangle$	$[\langle 13, -8, 16 \rangle]$	$[\langle 4, 4, 13 \rangle]$
67	6	$\langle 67, 24, 48 \rangle$	$[\langle 48, -24, 67 \rangle]$	$[\langle 12, 12, 67 \rangle]$
73	5	$\langle 73, 40, 16 \rangle$	$[\langle 16, -8, 49 \rangle]$	$[\langle 4, 4, 49 \rangle]$
79	4	$\langle 79, 38, 7 \rangle$	$[\langle 7, 4, 28 \rangle]$	$[\langle 7, 2, 7 \rangle]$
97	5	$\langle 97, 56, 16 \rangle$	$[\langle 16, 8, 49 \rangle]$	$[\langle 4, 4, 49 \rangle]$
103	4	$\langle 103, 46, 7 \rangle$	$[\langle 7, -4, 28 \rangle]$	$[\langle 7, 2, 7 \rangle]$
109	4	$\langle 109, 70, 13 \rangle$	$[\langle 13, 8, 16 \rangle]$	$[\langle 4, 4, 13 \rangle]$
127	4	$\langle 127, 116, 28 \rangle$	$[\langle 7, 4, 28 \rangle]$	$[\langle 7, 2, 7 \rangle]$

COMPLETING SQUARES OF ISOGENIES

EXTENDING THE LADDER

Let $\ell = 2$.

► The two ℓ-extensions are determined by a quadratic polynomial (deduced from y_{m-1}, y_{m-2}:

$$\phi_\ell(y)=0$$

We can solve for y_m, y_m' , its roots.

We have a degree q + 1 polynomial φ_q(y) = 0 determined by x_m but we do note need to compute it. It suffices

$$\phi_q(y) \; \bmod \phi_\ell(y)$$

Indeed

$$\Phi_q(x,y)\equiv \phi_q(y) \; \bmod \; (x-x_m,\phi_\ell(y))$$

There are multiple reasons to add level structure to our construction:

With an ℓ-level structure, the extension of ℓ-isogenies by modular correspondences allows one to automatically remove the dual isogeny (backtracking): there are ℓ rather than ℓ + 1 extensions.

There are multiple reasons to add level structure to our construction:

- ▶ With an ℓ-level structure, the extension of ℓ-isogenies by modular correspondences allows one to automatically remove the dual isogeny (backtracking): there are ℓ rather than $\ell + 1$ extensions.
- The modular isogeny chain is a potentially-non injective image of the isogeny chain.

There are multiple reasons to add level structure to our construction:

- With an ℓ-level structure, the extension of ℓ-isogenies by modular correspondences allows one to automatically remove the dual isogeny (backtracking): there are ℓ rather than ℓ + 1 extensions.
- ► The modular isogeny chain is a potentially-non injective image of the isogeny chain.
- ► Rigidifying automorphisms should also shorten the distance to which we need to go in order to differentiate 2 points (two torsion of *Cl*(*O*) may lift to non 2-torsion point in *Cl*(*O*, Γ)).

There are multiple reasons to add level structure to our construction:

- With an ℓ-level structure, the extension of ℓ-isogenies by modular correspondences allows one to automatically remove the dual isogeny (backtracking): there are ℓ rather than ℓ + 1 extensions.
- ► The modular isogeny chain is a potentially-non injective image of the isogeny chain.
- ► Rigidifying automorphisms should also shorten the distance to which we need to go in order to differentiate 2 points (two torsion of *Cl*(*O*) may lift to non 2-torsion point in *Cl*(*O*, Γ)).
- ► *q*-modular polynomial of higher level are smaller.

ISOGENY GRAPHS WITH LEVEL STRUCTURE

For any congruence subgroup Γ of level coprime to the characteristic, we have a covering $G_S(E,\Gamma) \to G_S(E)$ whose vertices are pairs $(E,\Gamma(P,Q))$ of supersingular elliptic curves/ \mathbb{F}_{p^2} and a Γ -level structure, and edges are isogenies $\psi: (E,\Gamma(P,Q)) \to (E',\Gamma(P',Q'))$ such that $\psi(\Gamma(P,Q)) = \Gamma(P',Q')$.

Eg. $\Gamma_0(N)$ -structures. Vertices (E, G) with $G \leq E[N]$ of order N $\operatorname{End}(E, G) = \{\alpha \in \operatorname{End}(E) \mid \alpha(G) \subseteq G\}$ isomorphic to Eichler order.

On the left the $\Gamma_0(3)$ supersingular 2-isogeny graph.

 $\begin{array}{l} 14 \leftrightarrow \{(E_0,G_1),(E_0,G_2),(E_0,G_3)\} \text{ where }\\ G_1,G_2,G_3 \text{ maps to each other under the }\\ \text{automorphism of } E_0\text{; they define 3 isogenies }\\ \text{to } E_3. \end{array}$

ORIENTED ISOGENY GRAPHS WITH LEVEL STRUCTURE

We will write $G_S(\mathsf{SS}_K(p,\Gamma))$ or $G_S(\mathsf{SS}_{\mathcal{O}}(p,\Gamma))$ for the supersingular isogeny graphs oriented by K with Γ -level structure.

Once again we have covers

 $G_S(\mathsf{SS}_K(p,\Gamma)) \to G_S(E,K) \quad \ G_S(\mathsf{SS}_{\mathcal{O}}(p,\Gamma)) \to G_S(E,\mathcal{O})$

The action of ideals through isogenies lets us define an action on $G_S(\mathbf{SS}_{\mathcal{O}}(p,\Gamma))$ by a ray class group $\mathscr{C}\!\ell(\mathcal{O},\Gamma)$

$$\begin{split} \mathcal{C}\!\ell(\mathcal{O},\Gamma) \times \mathbf{SS}_{\mathcal{O}}(p,\Gamma) &\longrightarrow \mathbf{SS}(p,\Gamma) \\ ([\mathfrak{a}],(E,\Gamma(P,Q))) &\longrightarrow (\phi_{\mathfrak{a}}(E),\Gamma(\phi_{\mathfrak{a}}(P),\phi_{\mathfrak{a}}(Q))) \end{split}$$

SOME MODULAR CURVES OF INTEREST FOR OSIDH

WEBER MODULAR FUNCTIONS

Introduced by H. Weber, they are

$$\begin{split} \mathfrak{f}(\tau) &= \zeta_{48}^{-1} \frac{\eta\left(\frac{\tau+1}{2}\right)}{\eta(\tau)} = q^{-\frac{1}{48}} \prod_{n=1}^{+\infty} (1+q^{n-\frac{1}{2}}) \\ \mathfrak{f}_1(\tau) &= \frac{\eta\left(\frac{\tau}{2}\right)}{\eta(\tau)} = q^{-\frac{1}{48}} \prod_{n=1}^{+\infty} (1-q^{n-\frac{1}{2}}) \\ \mathfrak{f}_2(\tau) &= \sqrt{2} \frac{\eta\left(2\tau\right)}{\eta(\tau)} = \sqrt{2} q^{\frac{1}{24}} \prod_{n=1}^{+\infty} (1+q^n) \end{split}$$

Historically, \mathfrak{f}_2 was the first to be studied by Weber, who eventually introduced the others such that

$$(X+\mathfrak{f}^8)(X-\mathfrak{f}_1^8)(X-\mathfrak{f}_2^8)=X^3-\gamma_2X+16$$

The previous relation $(X + \mathfrak{f}^8)(X - \mathfrak{f}^8_1)(X - \mathfrak{f}^8_2) = X^3 - \gamma_2 X + 16$ yields

$$\blacktriangleright \mathfrak{f}^8 = \mathfrak{f}_1^8 + \mathfrak{f}_2^8$$

The previous relation $(X + \mathfrak{f}^8)(X - \mathfrak{f}^8_1)(X - \mathfrak{f}^8_2) = X^3 - \gamma_2 X + 16$ yields

- $\blacktriangleright \ \mathfrak{f}^8 = \mathfrak{f}_1^8 + \mathfrak{f}_2^8$
- $\blacktriangleright \ \mathfrak{f}_1(2\tau)\mathfrak{f}_2(\tau) = \mathfrak{f}(\tau)\mathfrak{f}_1(\tau)\mathfrak{f}_2(\tau) = \sqrt{2}$

The previous relation $(X + \mathfrak{f}^8)(X - \mathfrak{f}^8_1)(X - \mathfrak{f}^8_2) = X^3 - \gamma_2 X + 16$ yields

$$\blacktriangleright \mathfrak{f}^8 = \mathfrak{f}_1^8 + \mathfrak{f}_2^8$$

•
$$\mathfrak{f}_1(2\tau)\mathfrak{f}_2(\tau) = \mathfrak{f}(\tau)\mathfrak{f}_1(\tau)\mathfrak{f}_2(\tau) = \sqrt{2}$$

which gives

$$\blacktriangleright \ \zeta_{48}^{-1} \eta\left(\frac{\tau+1}{2}\right) \eta\left(\frac{\tau}{2}\right) \eta(2\tau) = \eta(\tau)^3$$

The previous relation $(X + \mathfrak{f}^8)(X - \mathfrak{f}^8_1)(X - \mathfrak{f}^8_2) = X^3 - \gamma_2 X + 16$ yields

$$\blacktriangleright \mathfrak{f}^8 = \mathfrak{f}_1^8 + \mathfrak{f}_2^8$$

•
$$\mathfrak{f}_1(2\tau)\mathfrak{f}_2(\tau) = \mathfrak{f}(\tau)\mathfrak{f}_1(\tau)\mathfrak{f}_2(\tau) = \sqrt{2}$$

which gives

$$\blacktriangleright \ \zeta_{48}^{-1} \eta\left(\frac{\tau+1}{2}\right) \eta\left(\frac{\tau}{2}\right) \eta(2\tau) = \eta(\tau)^3$$

They have transformation formulæ

$$\blacktriangleright \ (\mathfrak{f},\mathfrak{f}_1,\mathfrak{f}_2)\circ S=(\mathfrak{f},\mathfrak{f}_2,\mathfrak{f}_1)$$

$$\blacktriangleright \ (\mathfrak{f},\mathfrak{f}_1,\mathfrak{f}_2)\circ T=(\zeta_{48}^{-1}\mathfrak{f}_1,\zeta_{48}^{-1}\mathfrak{f},\zeta_{24}\mathfrak{f}_2)$$

The previous relation $(X + \mathfrak{f}^8)(X - \mathfrak{f}^8_1)(X - \mathfrak{f}^8_2) = X^3 - \gamma_2 X + 16$ yields

$$\blacktriangleright \mathfrak{f}^8 = \mathfrak{f}_1^8 + \mathfrak{f}_2^8$$

•
$$\mathfrak{f}_1(2\tau)\mathfrak{f}_2(\tau) = \mathfrak{f}(\tau)\mathfrak{f}_1(\tau)\mathfrak{f}_2(\tau) = \sqrt{2}$$

which gives

$$\blacktriangleright \zeta_{48}^{-1} \eta\left(\frac{\tau+1}{2}\right) \eta\left(\frac{\tau}{2}\right) \eta(2\tau) = \eta(\tau)^3$$

They have transformation formulæ

$$\blacktriangleright \ (\mathfrak{f},\mathfrak{f}_1,\mathfrak{f}_2)\circ S=(\mathfrak{f},\mathfrak{f}_2,\mathfrak{f}_1)$$

$$\blacktriangleright \ (\mathfrak{f},\mathfrak{f}_1,\mathfrak{f}_2)\circ T=(\zeta_{48}^{-1}\mathfrak{f}_1,\zeta_{48}^{-1}\mathfrak{f},\zeta_{24}\mathfrak{f}_2)$$

and relations with the j-invariant

$$\blacktriangleright \ j = \frac{\left(\mathfrak{f}^{24} - 16\right)^3}{\mathfrak{f}^{24}} = \frac{\left(\mathfrak{f}^{24}_1 + 16\right)^3}{\mathfrak{f}^{24}_1} = \frac{\left(\mathfrak{f}^{24}_2 + 16\right)^3}{\mathfrak{f}^{24}_2}$$

WEBER MODULAR POLYNOMIALS

 $\mathfrak{f}(\tau)$ is a modular function of level 48 giving a degree 72 cover of the j-line.

The modular polynomials with respect to $\mathfrak f$ are the new (Weber) integral polynomials $\Phi_q(x,y)$ such that

$$\Phi_q\left(\mathfrak{f}(\tau),\mathfrak{f}(q\tau)\right)=0$$

Division Polynomials

Asymptotically, modular polynomials have q^2 monomials, but the symmetry $\Phi_q(\zeta_{24}x,\zeta_{24}^qy) = \zeta_{24}^{q+1}(x,y)$ yields a great sparsness:

$$\begin{array}{l} \Phi_5(x,y)=x^6-x^5y^5+4xy+y^6\\ \Phi_7(x,y)=x^8-x^7y^7+7x^4y^4-8xy+y^8\\ \Phi_{11}(x,y)=x^{12}-x^{11}y^{11}+11x^9y^9-44x^7y^7+88x^5y^5-88x^3y^3+32xy+y^{12} \end{array}$$

WEBER MODULAR POLYNOMIALS - FURTHER REDUCTIONS

L.COLÒ M

For $\ell = 2$ or $\ell = 3$, the 48-level structure gives the modular polynomials $\Phi_2(x,y)$ and $\Phi_3(x,y)$ a particular form.

• We descend the 2-level structure by setting $t = -\mathfrak{f}^8$, so that $j = \left(\frac{t^3+16}{t}\right)^3$. We obtain the modular polynomial:

$$\Psi_2(x,y)=(x^2-y)y+16x$$

and the Weber modular polynomial $\Phi_2(x,y)=-\Psi_2(-x^8,-y^8)$ remains irreducible

► A similar descent of the 3-level to the function $r = f^3$, gives the modular polynomial

$$\Psi_3(x,y) = x^4 - x^3y^3 + 8xy + y^4,$$

such that $\Psi_3(r(\tau), r(3\tau)) = 0$, for which $\Phi_3(x, y) = \Psi_3(x^3, y^3)$ is irreducible.

WEBER CURVES

We fix the normalization $(\mathfrak{u}_0,\mathfrak{u}_1,\mathfrak{u}_2) = (\mathfrak{f},\zeta_{16}\mathfrak{f}_1,\zeta_{16}^{-1}\mathfrak{f}_2).$ Notice that $\{\zeta_{24}^j\mathfrak{u}_i \mid j \in \mathbb{Z}/24\mathbb{Z}\}$ are the 72 roots of

$$(X^{24}-16)^3-j(q)X\in\mathbb{Q}(\zeta_{24})[[q^{1/24}]]$$

The map determined by the normalized Weber functions $(\mathfrak{u}_0^m:\mathfrak{u}_1^m:\mathfrak{u}_2^m:1)$ determines a Weber modular curve \mathcal{W}_{3n} in \mathbb{P}^3

$$\mathcal{W}_{3n}: \left\{ \begin{array}{l} X_0^n + X_1^n + X_2^n = 0, \\ X_0 X_1 X_2 = \sqrt{2}^m X_3^3 \end{array} \right.$$

for m and n such that mn = 8

The quotient Weber curve \mathcal{W}_n is defined as the image of $(\mathfrak{u}_0^{3m} : \mathfrak{u}_1^{3m} : \mathfrak{u}_2^{3m} : 1)$:

$$\mathcal{W}_n: \left\{ \begin{array}{l} X_0^n + X_1^n + X_2^n = 48X_3^n, \\ X_0 X_1 X_2 = \sqrt{2}^{3m} X_3^3. \end{array} \right.$$

These curves are equipped with maps $\mathcal{W}_{mn} \to \mathcal{W}_n$ for each product $mn \mid 24$.

To each factorization mn = 24, the Weber curve \mathcal{W}_n in \mathbb{P}^3 , defined by the triple of Weber functions $(\mathfrak{u}_0^m, \mathfrak{u}_1^m, \mathfrak{u}_2^m)$, comes equipped with an action of $\mathsf{PSL}_2(\mathbb{Z})$.

Weber Modular Curves

We denote the kernel of the action by Γ_n , identifying the Weber curves with the modular curve $X(\Gamma_n).$

WEBER MODULAR GROUPS

The $\text{PSL}_2(\mathbb{Z})$ action on Weber functions induces a representation in $\text{GL}_3(\mathbb{Q}(\zeta_n))$

$$S \longmapsto \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & \bar{\zeta}_8^m \\ 0 & \zeta_8^m & 0 \end{pmatrix} \quad T \longmapsto \begin{pmatrix} 0 & \zeta_{24}^m & 0 \\ \bar{\zeta}_{24}^- & 0 & 0 \\ 0 & 0 & \zeta_{24}^m \end{pmatrix}$$

Its kernel Γ_n is a normal congruence subgroup of $\mathsf{PSL}_2(\mathbb{Z})$.

Noting that $\Gamma_1 \subset \Gamma_3 \cap \Gamma_8 = \Gamma_{24}$, we reduce to determining Γ_3 and the chain $\Gamma_1 \subset \Gamma_2 \subset \Gamma_4 \subset \Gamma_8$.

Proposition

▶ The Weber kernel group Γ_1 equals $\Gamma(2)$ and $\mathcal{W}_1 \cong X(2)$.

 \blacktriangleright The Weber kernel group Γ_3 equals $\Gamma(2)\cap\Gamma_{ns}^+(3),$ and for each n dividing 8

$$\Gamma_{3n} = \Gamma_n \cap \Gamma_{ns}^+(3).$$

- $\blacktriangleright \ \, {\rm The \ Weber \ kernel \ group \ } \Gamma_2 \ {\rm equals \ } \Gamma(4) \ {\rm and \ } {\mathcal W}_2 = X(4).$
- $\blacktriangleright\,$ The Weber kernel group Γ_4 equals $\Gamma_s(8)$ and $\mathcal{W}_4=X_s(8).$

WEBER MODULAR GROUPS - THE GROUP Γ_8

$$\Gamma(16)\subset \Gamma_8\subset \Gamma_s(8)=\left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \ : \ b\equiv c\equiv 0 \bmod 8 \right\}$$

Proposition

The Weber kernel subgroup Γ_8 is generated by $\Gamma(16)$ and $\begin{pmatrix} 13 & 8\\ 8 & 5 \end{pmatrix}$

SUPERSINGULAR FIELDS OF DEFINITIONS

Theorem

For any positive integer N, then the supersingular invariants on the modular curve $X_0(N)$ are defined over \mathbb{F}_{p^2} , and if $p \equiv \pm 1 \mod N$, then the supersingular invariants also split over \mathbb{F}_{p^2} on $X_1(N)$.

As a consequence, the split Cartan modular curve $X_s(N)$, defined by the congruence subgroup $\Gamma_s(N)$ also splits the supersingular moduli for every N. Then, if $p \equiv \pm 1 \mod N$, then the supersingular invariants on the modular curve X(N) are defined over \mathbb{F}_{p^2} .

Theorem

The supersingular Weber invariants on \mathcal{W}_{24} are defined over \mathbb{F}_{p^2} .

$$\begin{array}{c} X(16,8,16) \longrightarrow X(8) \\ \left\langle \binom{13-8}{8-5} \right\rangle & \downarrow \left\langle \binom{5-0}{0-5} \right\rangle \\ \mathcal{W}_8 \longrightarrow X_s(8) \end{array}$$

WEBER INITIALIZATIONS

Let u be a supersingular value of the Weber function,

$$r = u^3 \qquad t = -u^8 \qquad s = t^3$$

along the chain $\mathcal{W}_8 \to Y \to X_0(2) \to X(1).$

The elliptic curves associated to Weber invariants is a fiber in the family:

$$y^2 + xy = x^3 - \frac{1}{u^{24} - 64}x$$

over u on the Weber curve.

The OSIDH protocol is initialized with oriented chains from an effective CM order. The initial values with which to build the public ℓ -isogeny chains are

WEBER INITIALIZATIONS - DISCRIMINANT -7

Endomorphism ring is small: generated by an endomorphism of degree 2 We avoiding any pathologies associated with the extra automorphisms.

- $t_0 = -1$ and c root of $x^2 x + 2$.
- ► c^4 and \bar{c}^4 also *t*-values over $j = -15^3$.
- ► Ψ₂(-1, c⁴) = Ψ₂(-1, c⁴) = 0, the two extensions correspond to the horizontal 2-isogenies.
- ► Ψ₂(c⁴, c⁴) = Ψ₂(c⁴, -2⁴) = 0: the former enters a cycle the latter induces a descending isogeny.

Initialization: $(t_0, t_1, t_2, ...)$ beginning with $(-1, c^4, -2^4, ...)$. Successive solutions to $\Psi_2(t_i, t_{i+1}) = 0$ are necessarily descending. Extension: random choice of root t_{i+1} of $\Psi_2(t_i, x)$.

WEBER INITIALIZATIONS - DISCRIMINANT -4

- ► t-invariants over j = 12³ fall in two orbits of points, {2, 2ω, 2ω²} of multiplicity 2, and {-4, -4ω, -4ω²} of multiplicity 1.
- ► These points at the surface are linked by a 2-isogeny and to 2-depth 1, to t = 8.
- $\Psi_2(\omega x, \omega^2 y) = \omega \Psi_2(x, y)$: the choice of representative in the orbit gives rise to one of three distinct components of the 2-isogeny graph.

Initialization: $(t_0, t_1, t_2, ...) = (2, 8, 8c, ...)$ where c is a root of $x^2 - 8x - 2$. Extension: random selection of a root t_{i+1} of $\Psi_2(t_i, x)$.

The full 2-isogeny graph has ascending edges from the depth one to $t_0 = 2$ If an isogeny is descending its only extension to a 2-isogeny chain is descending

WEBER INITIALIZATIONS - DISCRIMINANT -3

- $\blacktriangleright \ t_0 = -(\sqrt[3]{2})^4 = -2\sqrt[3]{2}.$
- ► { $t_0, t_0 \omega, t_0 \omega^2$ } are *t*-values over j = 0, each of multiplicity 3

$$\begin{array}{l} \blacktriangleright \ t_1 = -t_0^2 \text{, and} \\ \Psi_2(t_0,t_1\omega) = \Psi_2(t_0,t_1\omega^2) = 0, \end{array}$$

Since 2 is inert, every path from t_0 is descending, so we may initialize the 2-isogeny chain with $(t_0,t_1\omega).$

There are additional *t*-invariants at each depth > 0 which admit ascending and descending isogenies.

Any descending isogenies must rejoin this graph of descending isogenies from the surface.

THANK YOU FOR YOUR ATTENTION