MARSEILLE, 31 MAY 2021

A MODULAR APPROACH TO OSIDH

LEONARDO COLÒ & DAVID KOHEL Institut de Mathématiques de Marseille

Arithmetic, Geometry, Cryptography and Coding Theory 2021

ISOGENY GRAPHS

Definition

L.COLÒ M

Given an elliptic curve E over k, and a finite set of primes S, we can associate an isogeny graph $\Gamma=(E,S)$

- whose vertices are elliptic curves isogenous to E over \bar{k} , and
- whose edges are isogenies of degree $\ell \in S$.

The vertices are defined up to \bar{k} -isomorphism and the edges from a given vertex are defined up to a \bar{k} -isomorphism of the codomain.

If $S = \{\ell\}$, then we call Γ an ℓ -isogeny graph.

For an elliptic curve E/k and prime $\ell \neq char(k)$, the full ℓ -torsion subgroup is a 2-dimensional \mathbb{F}_{ℓ} -vector space:

$$E[\ell] = \left\{ P \in E[\bar{k} \, \big| \, \ell P = O] \right\} \simeq \mathbb{F}_{\ell}^2$$

Consequently, the set of cyclic subgroups is in bijection with $\mathbb{P}^1(\mathbb{F}_{\ell})$, which in turn are in bijection with the set of ℓ -isogenies from *E*.

Thus, the ℓ -isogeny graph of E is $(\ell + 1)$ -regular (as a directed multigraph).

ORIENTED ISOGENY GRAPHS

Let \mathcal{O} be an order in an imaginary quadratic field *K*. An \mathcal{O} -orientation on a supersingular elliptic curve *E* is an inclusion $\iota : \mathcal{O} \hookrightarrow \text{End}(E)$, and a *K*-orientation is an inclusion $\iota : K \hookrightarrow \text{End}^0(E) = \text{End}(E) \otimes_{\mathbb{Z}} \mathbb{Q}$. An \mathcal{O} -orientation is primitive if $\mathcal{O} \simeq \text{End}(E) \cap \iota(K)$.

Theorem

The category of *K*-oriented supersingular elliptic curves (E, ι) , whose morphisms are isogenies commuting with the *K*-orientations, is equivalent to the category of elliptic curves with CM by *K*.

The orientation by a quadratic imaginary field gives to supersingular isogeny graphs the rigid structure of a volcano. It also differentiates vertices in the descending paths from the crater, determining an infinite graph.

ORIENTED ISOGENY GRAPHS - AN EXAMPLE

Let E_0/\mathbb{F}_{71} be the supersingular elliptic curve with j(E) = 0, oriented by the order $\mathcal{O}_K = \mathbb{Z}[\omega]$, where $\omega^2 + \omega + 1 = 0$. The unoriented 2-isogeny graph is the finite graph on the left.

The orientation by $K = \mathbb{Q}[\omega]$ differentiates vertices in the descending paths from E_0 , determining an infinite graph shown here to depth 4:

CLASS GROUP ACTION

- ► $SS(p) = {$ supersingular elliptic curves over $\overline{\mathbb{F}}_p$ up to isomorphism $}.$
- ► $SS_{\mathcal{O}}(p) = \{\mathcal{O} \text{-oriented s.s. elliptic curves over } \overline{\mathbb{F}}_p \text{ up to } K \text{-isomorphism} \}.$
- ▶ $SS_{\mathcal{O}}^{pr}(p)$ =subset of primitive \mathcal{O} -oriented curves.

The set $\mathbf{SS}_{\mathcal{O}}(p)$ admits a transitive group action:

$$\mathcal{C}\!\ell(\mathcal{O})\times\mathsf{SS}_{\mathcal{O}}(p) \ \longrightarrow \ \mathsf{SS}_{\mathcal{O}}(p) \qquad ([\mathfrak{a}],E) \ \longmapsto \ \mathfrak{ss}_{\mathcal{O}}(p) \qquad ([\mathfrak{a}],E) \ \longmapsto \ \mathfrak{ss}_{\mathcal{O}}(p) \ \mathfrak{ss}_{\mathcal{O}}($$

Proposition

The class group $\mathcal{C}\!\ell(\mathcal{O})$ acts faithfully and transitively on the set of \mathcal{O} -isomorphism classes of primitive \mathcal{O} -oriented elliptic curves.

In particular, for fixed primitive \mathcal{O} -oriented *E*, we obtain a bijection of sets:

$$\mathcal{C}\!\ell(\mathcal{O}) \longrightarrow \mathbf{SS}^{pr}_{\mathcal{O}}(p) \qquad [\mathfrak{a}] \longmapsto [\mathfrak{a}] \cdot E$$

EFFECTIVE CLASS GROUP ACTION

L.COLÒ M

The theory of complex multiplication relates the geometry of isogenies to the arithmetic Galois action on elliptic curves in characteristic zero, mediated by the map of $\mathcal{C}\!\ell(\mathcal{O})$ into each.

Over a finite field, we use the geometric action by isogenies to recover the class group action. In particular we describe the action of $\mathcal{C}\ell(\mathcal{O})$ on ℓ -isogeny chains in the *whirlpool*.

Suppose that (E_i,ϕ_i) is a descending $\ell\text{-isogeny}$ chain with

$$\mathcal{O}_K \subseteq \operatorname{End}(E_0), \dots, \mathcal{O} = \mathbb{Z} + \ell^n \mathcal{O}_K \subseteq \operatorname{End}(E_n).$$

If \mathfrak{q} is a split prime in \mathcal{O}_K over $q \neq \ell, p,$ then the isogeny

$$\psi_0: E_0 \to F_0 = E_0 / E_0[\mathfrak{q}]$$

can be extended to the $\ell\text{-isogeny}$ chain by pushing forward the cyclic group $C_0=E_0[\mathfrak{q}]$:

$$C_0=E_0[\mathfrak{q}], C_1=\phi_0(C_0), \dots, C_n=\phi_{n-1}(C_{n-1}),$$

and defining $F_i = E_i/C_i$.

LADDERS

This construction motivates the following definition.

Definition

An ℓ -ladder of length n and degree q is a commutative diagram of ℓ -isogeny chains $(E_i, \phi_i), (F_i, \phi'_i)$ of length n connected by q-isogenies $\psi_i : E_i \to F_i$

If ψ_0 is as above $((\psi_0) = E_0[\mathfrak{q}])$, the ladder encodes the action of $\mathcal{C}\ell(\mathcal{O})$ on ℓ -isogeny chains, and consequently on elliptic curves at depth n.

INITIALIZING THE LADDER

We characterize the initialization phase of ladder construction = construction of q-isogenies of ℓ -isogeny chains for level one, $\Gamma = \mathsf{PSL}_2(\mathbb{Z})$.

The structure of oriented isogeny graphs (of level one) depends only on the class groups $\mathcal{C}\!\ell(\mathcal{O}_n)$ (at level n) and the quotient maps $\mathcal{C}\!\ell(\mathcal{O}_n) \to \mathcal{C}\!\ell(\mathcal{O}_{n-1})$. The quotient maps determine the edges of the ℓ -isogeny graph (between level n and n-1) and the class of the prime ideals over $q \neq \ell$ in $\mathcal{C}\!\ell(\mathcal{O}_n)$ determine edges between vertices at level n.

We assume we are given a descending modular ℓ -isogeny chain, beginning with an initial modular point associated to a CM point with CM order \mathcal{O}_K . In order to initialize a *q*-ladder, at small distance *m* from the initial point, we can identify a reduced ideal class in $\mathcal{C}\!\ell(\mathcal{O}_m)$ which lies in the same class in $\mathcal{C}\!\ell(\mathcal{O}_m)$.

INITIALIZING THE LADDER - AN EXAMPLE Suppose $D_K = -3$, and $\ell = 2$; we note that for all $n \ge 3$, that

$$\geq$$
 3, that

 ${\mathcal{C}}\!\ell({\mathcal{O}}_n)\cong {\mathbb{Z}}/2{\mathbb{Z}}\times {\mathbb{Z}}/2^{n-2}{\mathbb{Z}}$

and in particular, $\mathcal{C}\!\ell(\mathcal{O}_n)[2]$ consist of the classes of binary quadratic forms

$$\begin{split} \{ \langle 1,0,|D_K|\ell^{2(n-1)}\rangle, \langle |D_K|,0,\ell^{2(n-1)}\rangle, \langle \ell^2,\ell^2,n_1\rangle, \langle \ell^2|D_K|,\ell^2|D_K|,n_2\rangle \}. \end{split}$$
 where $\ell^4 - 4\ell^2n_1 = \ell^4|D_K|^2 - 4\ell^2|D_K|n_2 = -\ell^{2n}|D_K|$, whence $n_1 = 1 + \ell^{2(n-2)}|D_K| \text{ and } n_2 = |D_K| + \ell^{2(n-2)}. \end{split}$

For n=3, the form $\langle 12,12,7\rangle$ reduces to $\langle 7,2,7\rangle$ and the reduced representatives are:

$$\{\langle 1,0,48\rangle, \langle 3,0,16\rangle, \langle 4,4,13\rangle, \langle 7,2,7\rangle\}.$$

but for for $n \ge 4$, since $12 < n_2$, the forms

$$\{\langle 1,0,3\cdot 4^{n-2}\rangle, \langle 3,0,4^{n-2}\rangle, \langle 4,4,n_1\rangle, \langle 12,12,n_2\rangle\}$$

are reduced.

MODULAR OSIDH | AGCT - 31 May 2021

INITIALIZING THE LADDER - A PICTURE

INITIALIZING THE LADDER - A TABLE

q	m	f_m	$[f_m]$	$[f_{m-1}]$
7	4	$\langle 7, 4, 28 \rangle$	$[\langle 7, 4, 28 \rangle]$	$[\langle 7, 2, 7 \rangle]$
13	4	$\langle 13, 8, 16 \rangle$	$[\langle 13, 8, 16 \rangle]$	$[\langle 4, 4, 13 \rangle]$
19	5	$\langle 19, 14, 43 \rangle$	$[\langle 19, 14, 43 \rangle]$	$[\langle 12, 12, 19 \rangle]$
31	4	$\langle 31, 10, 7 \rangle$	$[\langle 7, 4, 28 \rangle]$	$[\langle 7, 2, 7 \rangle]$
37	4	$\langle 37, 34, 13 \rangle$	$[\langle 13, -8, 16 \rangle]$	$[\langle 4, 4, 13 \rangle]$
43	5	$\langle 43, 14, 19 \rangle$	$[\langle 19, -14, 43 \rangle]$	$[\langle 12, 12, 19 \rangle]$
61	4	$\langle 61, 56, 16 \rangle$	$[\langle 13, -8, 16 \rangle]$	$[\langle 4, 4, 13 \rangle]$
67	6	$\langle 67, 24, 48 \rangle$	$[\langle 48, -24, 67 \rangle]$	$[\langle 12, 12, 67 \rangle]$
73	5	$\langle 73, 40, 16 \rangle$	$[\langle 16, -8, 49 \rangle]$	$[\langle 4, 4, 49 \rangle]$
79	4	$\langle 79, 38, 7 \rangle$	$[\langle 7, 4, 28 \rangle]$	$[\langle 7, 2, 7 \rangle]$
97	5	$\langle 97, 56, 16 \rangle$	$[\langle 16, 8, 49 \rangle]$	$[\langle 4, 4, 49 \rangle]$
103	4	$\langle 103, 46, 7 \rangle$	$[\langle 7, -4, 28 \rangle]$	$[\langle 7, 2, 7 \rangle]$
109	4	$\langle 109, 70, 13 \rangle$	$[\langle 13, 8, 16 \rangle]$	$[\langle 4, 4, 13 \rangle]$
127	4	$\langle 127, 116, 28 \rangle$	$[\langle 7, 4, 28 \rangle]$	$[\langle 7, 2, 7 \rangle]$

COMPLETING SQUARES OF ISOGENIES

EXTENDING THE LADDER

Let $\ell = 2$.

► The two ℓ-extensions are determined by a quadratic polynomial (deduced from y_{m-1}, y_{m-2}:

$$\phi_\ell(y)=0$$

We can solve for y_m, y_m' , its roots.

• We have a degree q + 1 polynomial $\phi_q(y) = 0$ determined by x_m but we do note need to compute it. It suffices

$$\phi_q(y) \; \bmod \phi_\ell(y)$$

Indeed

$$\Phi_q(x,y)\equiv \phi_q(y) \; \bmod \; (x-x_m,\phi_\ell(y))$$

There are multiple reasons to add level structure to our construction:

With an ℓ-level structure, the extension of ℓ-isogenies by modular correspondences allows one to automatically remove the dual isogeny (backtracking): there are ℓ rather than ℓ + 1 extensions.

There are multiple reasons to add level structure to our construction:

- With an ℓ-level structure, the extension of ℓ-isogenies by modular correspondences allows one to automatically remove the dual isogeny (backtracking): there are ℓ rather than ℓ + 1 extensions.
- ► The modular isogeny chain is a potentially-non injective image of the isogeny chain.

There are multiple reasons to add level structure to our construction:

- With an ℓ-level structure, the extension of ℓ-isogenies by modular correspondences allows one to automatically remove the dual isogeny (backtracking): there are ℓ rather than ℓ + 1 extensions.
- ► The modular isogeny chain is a potentially-non injective image of the isogeny chain.
- ► Rigidifying automorphisms should also shorten the distance to which we need to go in order to differentiate 2 points (two torsion of *Cl*(*O*) may lift to non 2-torsion point in *Cl*(*O*, Γ)).

There are multiple reasons to add level structure to our construction:

- With an ℓ-level structure, the extension of ℓ-isogenies by modular correspondences allows one to automatically remove the dual isogeny (backtracking): there are ℓ rather than ℓ + 1 extensions.
- ► The modular isogeny chain is a potentially-non injective image of the isogeny chain.
- ► Rigidifying automorphisms should also shorten the distance to which we need to go in order to differentiate 2 points (two torsion of *Cl*(*O*) may lift to non 2-torsion point in *Cl*(*O*, Γ)).
- ► *q*-modular polynomial of higher level are smaller.

SOME MODULAR CURVES OF INTEREST FOR OSIDH

Future directions:

- Implementation and algorithmic optimization.
- Explicit realization of the class group action.

THANK YOU FOR YOUR ATTENTION