MARSEILLE, З1 MAY २०२I

A MODULAR APPROACH TO OSIDH

LEONAROO COLO \& DAVID KOHEL

Institut de Mathématiques de Marseille

Arithmetic, Geometry, Cryptography and Coding Theory 2021

ISOGENY GRAPHS

Definition

Given an elliptic curve E over k, and a finite set of primes S, we can associate an isogeny graph $\Gamma=(E, S)$

- whose vertices are elliptic curves isogenous to E over \bar{k}, and
- whose edges are isogenies of degree $\ell \in S$.

The vertices are defined up to \bar{k}-isomorphism and the edges from a given vertex are defined up to a \bar{k}-isomorphism of the codomain.

If $S=\{\ell\}$, then we call Γ an ℓ-isogeny graph.
For an elliptic curve E / k and prime $\ell \neq \operatorname{char}(k)$, the full ℓ-torsion subgroup is a 2-dimensional \mathbb{F}_{ℓ}-vector space:

$$
E[\ell]=\{P \in E[\bar{k} \mid \ell P=O]\} \simeq \mathbb{F}_{\ell}^{2}
$$

Consequently, the set of cyclic subgroups is in bijection with $\mathbb{P}^{1}\left(\mathbb{F}_{\ell}\right)$, which in turn are in bijection with the set of ℓ-isogenies from E.

Thus, the ℓ-isogeny graph of E is $(\ell+1)$-regular (as a directed multigraph).

ORIENTED ISOGENY GRAPHS

Let \mathcal{O} be an order in an imaginary quadratic field K. An \mathcal{O}-orientation on a supersingular elliptic curve E is an inclusion $\iota: \mathcal{O} \hookrightarrow \operatorname{End}(E)$, and a K-orientation is an inclusion $\iota: K \hookrightarrow \operatorname{End}^{0}(E)=\operatorname{End}(E) \otimes_{\mathbb{Z}} \mathbb{Q}$. An \mathcal{O}-orientation is primitive if $\mathcal{O} \simeq \operatorname{End}(E) \cap \iota(K)$.

Theorem

The category of K-oriented supersingular elliptic curves (E, ι), whose morphisms are isogenies commuting with the K-orientations, is equivalent to the category of elliptic curves with CM by K.

The orientation by a quadratic imaginary field gives to supersingular isogeny graphs the rigid structure of a volcano. It also differentiates vertices in the descending paths from the crater, determining an infinite graph.

ORIENTED ISOGENY GRAPHS - an example

Let E_{0} / \mathbb{F}_{71} be the supersingular elliptic curve with $j(E)=0$, oriented by the order $\mathcal{O}_{K}=\mathbb{Z}[\omega]$, where $\omega^{2}+\omega+1=0$. The unoriented 2-isogeny graph is the finite graph on the left.
The orientation by $K=\mathbb{Q}[\omega]$ differentiates vertices in the descending paths from E_{0}, determining an infinite graph shown here to depth 4:

CLASS GROUP ACTION

- SS $(p)=$ \{supersingular elliptic curves over $\overline{\mathbb{F}}_{p}$ up to isomorphism\}.
- $\mathrm{SS}_{\mathcal{O}}(p)=\left\{\mathcal{O}\right.$-oriented s.s. elliptic curves over $\overline{\mathbb{F}}_{p}$ up to K-isomorphism $\}$.
- $\mathrm{SS}_{\mathcal{O}}^{p r}(p)=$ subset of primitive \mathcal{O}-oriented curves.

The set $\mathrm{SS}_{\mathcal{O}}(p)$ admits a transitive group action:

$$
\mathcal{C} \ell(\mathcal{O}) \times \mathrm{SS}_{\mathcal{O}}(p) \longrightarrow \mathrm{SS}_{\mathcal{O}}(p) \quad([\mathfrak{a}], E) \longmapsto[\mathfrak{a}] \cdot E=E / E[\mathfrak{a}]
$$

Proposition

The class group $\mathcal{C}(\mathcal{O})$ acts faithfully and transitively on the set of \mathcal{O} isomorphism classes of primitive \mathcal{O}-oriented elliptic curves.

In particular, for fixed primitive \mathcal{O}-oriented E, we obtain a bijection of sets:

$$
\mathcal{C \ell}(\mathcal{O}) \longrightarrow \mathrm{SS}_{\mathcal{O}}^{p r}(p) \quad[\mathfrak{a}] \longmapsto[\mathfrak{a}] \cdot E
$$

EEFECTIVE CLASS GROUP ACTION

The theory of complex multiplication relates the geometry of isogenies to the arithmetic Galois action on elliptic curves in characteristic zero, mediated by the map of $\mathcal{C}(\mathcal{O})$ into each.
Over a finite field, we use the geometric action by isogenies to recover the class group action. In particular we describe the action of $\mathcal{C}(\mathcal{O})$ on ℓ-isogeny chains in the whirlpool.

Suppose that $\left(E_{i}, \phi_{i}\right)$ is a descending ℓ-isogeny chain with

$$
\mathcal{O}_{K} \subseteq \operatorname{End}\left(E_{0}\right), \ldots, \mathcal{O}=\mathbb{Z}+\ell^{n} \mathcal{O}_{K} \subseteq \operatorname{End}\left(E_{n}\right)
$$

If \mathfrak{q} is a split prime in \mathcal{O}_{K} over $q \neq \ell, p$, then the isogeny

$$
\psi_{0}: E_{0} \rightarrow F_{0}=E_{0} / E_{0}[\mathfrak{q}]
$$

can be extended to the ℓ-isogeny chain by pushing forward the cyclic group $C_{0}=E_{0}[\mathfrak{q}]$:

$$
C_{0}=E_{0}[\mathfrak{q}], C_{1}=\phi_{0}\left(C_{0}\right), \ldots, C_{n}=\phi_{n-1}\left(C_{n-1}\right),
$$

and defining $F_{i}=E_{i} / C_{i}$.

LADDERS

This construction motivates the following definition.

Definition

An ℓ-ladder of length n and degree q is a commutative diagram of ℓ-isogeny chains $\left(E_{i}, \phi_{i}\right),\left(F_{i}, \phi_{i}^{\prime}\right)$ of length n connected by q-isogenies $\psi_{i}: E_{i} \rightarrow F_{i}$

If ψ_{0} is as above $\left(\left(\psi_{0}\right)=E_{0}[\mathfrak{q}]\right)$, the ladder encodes the action of $\mathcal{C}(\mathcal{O})$ on ℓ-isogeny chains, and consequently on elliptic curves at depth n.

INTIALIZING THE LADCER

We characterize the initialization phase of ladder construction $=$ construction of q-isogenies of ℓ-isogeny chains for level one, $\Gamma=\mathrm{PSL}_{2}(\mathbb{Z})$.

The structure of oriented isogeny graphs (of level one) depends only on the class groups $\mathcal{C}\left(\mathcal{O}_{n}\right)$ (at level n) and the quotient maps $\mathcal{C}\left(\mathcal{O}_{n}\right) \rightarrow \mathcal{C} \ell\left(\mathcal{O}_{n-1}\right)$. The quotient maps determine the edges of the ℓ-isogeny graph (between level n and $n-1)$ and the class of the prime ideals over $q \neq \ell$ in $\mathcal{C}\left(\mathcal{O}_{n}\right)$ determine edges between vertices at level n.

We assume we are given a descending modular ℓ-isogeny chain, beginning with an initial modular point associated to a CM point with CM order \mathcal{O}_{K}. In order to initialize a q-ladder, at small distance m from the initial point, we can identify a reduced ideal class in $\mathcal{C} \ell\left(\mathcal{O}_{m}\right)$ which lies in the same class in $\mathcal{C} \ell\left(\mathcal{O}_{m}\right)$.

INTIIALIZIING THE LADDER - an exanple

Suppose $D_{K}=-3$, and $\ell=2$; we note that for all $n \geq 3$, that

$$
\mathcal{C \ell}\left(\mathcal{O}_{n}\right) \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2^{n-2} \mathbb{Z}
$$

and in particular, $\mathcal{C}\left(\mathcal{O}_{n}\right)[2]$ consist of the classes of binary quadratic forms

$$
\left\{\langle 1,0,| D_{K}\left|\ell^{2(n-1)}\right\rangle,\langle | D_{K}\left|, 0, \ell^{2(n-1)}\right\rangle,\left\langle\ell^{2}, \ell^{2}, n_{1}\right\rangle,\left\langle\ell^{2}\right| D_{K}\left|, \ell^{2}\right| D_{K}\left|, n_{2}\right\rangle\right\} .
$$

where $\ell^{4}-4 \ell^{2} n_{1}=\ell^{4}\left|D_{K}\right|^{2}-4 \ell^{2}\left|D_{K}\right| n_{2}=-\ell^{2 n}\left|D_{K}\right|$, whence

$$
n_{1}=1+\ell^{2(n-2)}\left|D_{K}\right| \text { and } n_{2}=\left|D_{K}\right|+\ell^{2(n-2)} .
$$

For $n=3$, the form $\langle 12,12,7\rangle$ reduces to $\langle 7,2,7\rangle$ and the reduced representatives are:

$$
\{\langle 1,0,48\rangle,\langle 3,0,16\rangle,\langle 4,4,13\rangle,\langle 7,2,7\rangle\} .
$$

but for for $n \geq 4$, since $12<n_{2}$, the forms

$$
\left\{\left\langle 1,0,3 \cdot 4^{n-2}\right\rangle,\left\langle 3,0,4^{n-2}\right\rangle,\left\langle 4,4, n_{1}\right\rangle,\left\langle 12,12, n_{2}\right\rangle\right\}
$$

are reduced.

INTIIALIZING THE LADDER - a pcctuae

INTIALLZIING THE LADDER - atable

q	m	f_{m}	$\left[f_{m}\right]$	$\left[f_{m-1}\right]$
7	4	$\langle 7,4,28\rangle$	$[\langle 7,4,28\rangle]$	$[\langle 7,2,7\rangle]$
13	4	$\langle 13,8,16\rangle$	$[\langle 13,8,16\rangle]$	$[\langle 4,4,13\rangle]$
19	5	$\langle 19,14,43\rangle$	$[\langle 19,14,43\rangle]$	$[\langle 12,12,19\rangle]$
31	4	$\langle 31,10,7\rangle$	$[\langle 7,4,28\rangle]$	$[\langle 7,2,7\rangle]$
37	4	$\langle 37,34,13\rangle$	$[\langle 13,-8,16\rangle]$	$[\langle 4,4,13\rangle]$
43	5	$\langle 43,14,19\rangle$	$[\langle 19,-14,43\rangle]$	$[\langle 12,12,19\rangle]$
61	4	$\langle 61,56,16\rangle$	$[\langle 13,-8,16\rangle]$	$[\langle 4,4,13\rangle]$
67	6	$\langle 67,24,48\rangle$	$[\langle 48,-24,67\rangle]$	$[\langle 12,12,67\rangle]$
73	5	$\langle 73,40,16\rangle$	$[\langle 16,-8,49\rangle]$	$[\langle 4,4,49\rangle]$
79	4	$\langle 79,38,7\rangle$	$[\langle 7,4,28\rangle]$	$[\langle 7,2,7\rangle]$
97	5	$\langle 97,56,16\rangle$	$[\langle 16,8,49\rangle]$	$[\langle 4,4,49\rangle]$
103	4	$\langle 103,46,7\rangle$	$[\langle 7,-4,28\rangle]$	$[\langle 7,2,7\rangle]$
109	4	$\langle 109,70,13\rangle$	$[\langle 13,8,16\rangle]$	$[\langle 4,4,13\rangle]$
127	4	$\langle 127,116,28\rangle$	$[\langle 7,4,28\rangle]$	$[\langle 7,2,7\rangle]$

COMPLETING SOUARES OF ISOGENES

EXTENDING THE LADDER

Let $\ell=2$.

- The two ℓ-extensions are determined by a quadratic polynomial (deduced from y_{m-1}, y_{m-2} :

$$
\phi_{\ell}(y)=0
$$

We can solve for y_{m}, y_{m}^{\prime}, its roots.

- We have a degree $q+1$ polynomial $\phi_{q}(y)=0$ determined by x_{m} but we do note need to compute it. It suffices

$$
\phi_{q}(y) \bmod \phi_{\ell}(y)
$$

Indeed
$\Phi_{q}(x, y) \equiv \phi_{q}(y) \bmod \left(x-x_{m}, \phi_{\ell}(y)\right)$

ADDING LEVEL STRUCTURE

There are multiple reasons to add level structure to our construction:

- With an ℓ-level structure, the extension of ℓ-isogenies by modular correspondences allows one to automatically remove the dual isogeny (backtracking): there are ℓ rather than $\ell+1$ extensions.

ADDING LEVEL STRUCTURE

There are multiple reasons to add level structure to our construction:

- With an ℓ-level structure, the extension of ℓ-isogenies by modular correspondences allows one to automatically remove the dual isogeny (backtracking): there are ℓ rather than $\ell+1$ extensions.
- The modular isogeny chain is a potentially-non injective image of the isogeny chain.

ADDING LEVEL STRUCTURE

There are multiple reasons to add level structure to our construction:

- With an ℓ-level structure, the extension of ℓ-isogenies by modular correspondences allows one to automatically remove the dual isogeny (backtracking): there are ℓ rather than $\ell+1$ extensions.
- The modular isogeny chain is a potentially-non injective image of the isogeny chain.
- Rigidifying automorphisms should also shorten the distance to which we need to go in order to differentiate 2 points (two torsion of $\mathcal{C \ell}(\mathcal{O})$ may lift to non 2-torsion point in $\mathcal{C} \ell(\mathcal{O}, \Gamma)$).

ADDING LEVEL STRUCTURE

There are multiple reasons to add level structure to our construction:

- With an ℓ-level structure, the extension of ℓ-isogenies by modular correspondences allows one to automatically remove the dual isogeny (backtracking): there are ℓ rather than $\ell+1$ extensions.
- The modular isogeny chain is a potentially-non injective image of the isogeny chain.
- Rigidifying automorphisms should also shorten the distance to which we need to go in order to differentiate 2 points (two torsion of $\mathcal{C \ell}(\mathcal{O})$ may lift to non 2-torsion point in $\mathcal{C}(\mathcal{O}, \Gamma))$.
- q-modular polynomial of higher level are smaller.

SOME MODULAR CURVES OF INTEREST FOR OSIDH

Future directions:

- Implementation and algorithmic optimization.
- Explicit realization of the class group action.

THANK YOU FOR YOUR ATTENTION

