THE WEIL BOUND \& ITS FIRST REFINEMENT

LEONARDO COLȮ

Institut de Mathématiques de Marseille

Groupe de Travail ATI - Arithmétique et Théorie de l'Information

CURVES

Let X be a genus g curve over a finite field \mathbb{F}_{q}.

Frobenius

For any commutative \mathbb{F}_{q}-algebra R, the map $x \mapsto x^{q}$ is an \mathbb{F}_{q}-homomorphism from R to itself. For any scheme X over \mathbb{F}_{q}, this construction induces $F: X \rightarrow X$ called the Frobenius of X.
Let $\bar{X}=X \otimes_{\mathbb{F}_{q}} \overline{\mathbb{F}}_{q}$, then \bar{X} is a smooth irreducible projective curve and

$$
\begin{aligned}
F: \bar{X} & \longrightarrow \bar{X} \\
\left(x_{0}: \ldots: x_{d}\right) & \longmapsto\left(x_{0}^{q}: \ldots: x_{d}^{q}\right)
\end{aligned}
$$

has degree q.

$$
X\left(\mathbb{F}_{q}\right)=\operatorname{Fix}\left(F, \bar{X}\left(\bar{F}_{q}\right)\right)
$$

WELL AND HASSE BOUNDS

Weil bound

Let X be a genus g curve over \mathbb{F}_{q}. We let $N(X)=\# X\left(\mathbb{F}_{q}\right)$. Then

$$
|N(X)-(q+1)| \leq 2 g \sqrt{q}
$$

Hasse bound

Let E be an elliptic curve over \mathbb{F}_{q}. Then

$$
|N(E)-(q+1)| \leq 2 \sqrt{q}
$$

HASSE BOUNDS - an example

Consider the elliptic curve $E: y^{2}=x^{3}-x+1$. Then

q	$N_{q}(E)$	$\|N(E)-(q+1)\|$	$2 \sqrt{q}$
3	7	3	3.46
5	8	2	4.47
7	12	4	5.29
9	7	3	6
11	10	2	6.63
13	19	5	7.21
17	14	4	8.25
19	22	2	8.72
25	32	6	10
27	28	0	10.39
29	37	7	10.77
31	35	3	11.14
37	36	2	12.17
49	48	2	14

HASSE BOUNDS - skecth of proof

- The Frobenius endomorphism of E generates the Galois group $\mathcal{G} a \ell\left(\overline{\mathbb{F}}_{q} / \mathbb{F}_{q}\right)$.
- Then, for all $P \in E\left(\overline{\mathbb{F}}_{q}\right)$, we have

$$
P \in E\left(\mathbb{F}_{q}\right) \text { if and only if } F(P)=P
$$

- Thus, $E\left(\mathbb{F}_{q}\right)=\operatorname{ker}(1-F)$
- In particular, as $1-F$ is a separable isogeny, this implies

$$
\# E\left(\mathbb{F}_{q}\right)=\# \operatorname{ker}(1-F)=\operatorname{deg}(1-F)
$$

- Cauchy-Schwarz inequality gives

$$
\begin{gathered}
|\operatorname{deg}(1-F)-\operatorname{deg}(F)-\operatorname{deg}(1)| \leq 2 \sqrt{\operatorname{deg}(F) \operatorname{deg}(1)} \\
\left|\# E\left(\mathbb{F}_{q}\right)-q-1\right| \leq 2 \sqrt{q}
\end{gathered}
$$

There are many different approaches to the Weil bound.

- Cohomology
- Intersection theory on the self-product of the curve (Weil's second proof)
- Comparison of a curve with its Jacobian (Weil's original argument)
- Polynomial methods (Bombieri-Stepanov)

WEIL BOUNDS - the IIEA behind the cohomology approach

The idea is that counting fixed points of a self-map on a space should have something to do with computing traces of some associated linear map ${ }^{1}$.

Example. If σ is a permutation of $\{1, \ldots, n\}$, then the number of fixed points of σ is equal to the trace of the permutation matrix associated to σ.

Example. [Lefschetz trace formula]. Let $T: S \rightarrow S$ be a continuous map of a topological space. Under suitable conditions, the quantity

$$
\sum_{i}(-1)^{i} \operatorname{Trace}\left(T, H^{i}(S)\right)
$$

gives a weighted count of the fixed points of T; in particular, the nonvanishing of this quantity can be used to establish the existence of a fixed point of T.
${ }^{1}$ Kedlaya, K. Course Math 206A - Topics in Algebraic Geometry: Weil cohomology in practi~ ${ }_{6}$

WEIL BOUNDS - the well cohomological metaconjecture

For some field K of characteristic zero, there is a series of contravariant "cohomological" functors
$H^{i}:\left\{\right.$ algebraic varieties over $\left.\mathbb{F}_{q}\right\} \longrightarrow\{$ finite dimensional vector spaces over K \} satisfying the following formula: for $i=0, \ldots, 2 d=2 \operatorname{dim}(X)$

$$
\# X\left(\mathbb{F}_{q^{n}}\right)=\sum_{i=0}^{2 d}(-1)^{i} \operatorname{Trace}\left(F^{n}, H^{i}(X)\right)
$$

THE COHOMOLOGY APPROACH - classical cohomology

$$
H^{\bullet}(X)=\bigoplus_{i} H^{i}(X)
$$

- $H^{i}(X)$ is a finite dimensional vector space over K and $H^{i}(X)=0$ for $i>2 d$.

THE COHOMOLOGY APPROACH - classical cohomolog

$$
H^{\bullet}(X)=\bigoplus_{i} H^{i}(X)
$$

- $H^{i}(X)$ is a finite dimensional vector space over K and $H^{i}(X)=0$ for $i>2 d$.
- Poincaré Duality. There is a bilinear form $H^{i}(X) \times H^{2 d-i} \rightarrow H^{2 d} \simeq K$ allowing the identification

$$
H^{2 d-i}(X) \leadsto H_{i}(X)=\operatorname{Hom}\left(H^{i}(X), K\right)
$$

THE COHOMOLOGY APPROACH - classical cohomolog

$$
H^{\bullet}(X)=\bigoplus_{i} H^{i}(X)
$$

- $H^{i}(X)$ is a finite dimensional vector space over K and $H^{i}(X)=0$ for $i>2 d$.
- Poincaré Duality. There is a bilinear form $H^{i}(X) \times H^{2 d-i} \rightarrow H^{2 d} \simeq K$ allowing the identification

$$
H^{2 d-i}(X) \leadsto H_{i}(X)=\operatorname{Hom}\left(H^{i}(X), K\right)
$$

- Künneth formula $H^{\bullet}(X) \otimes H^{\bullet}(Y) \simeq H^{\bullet}(X \times Y)$

THE COHOMOLOGY APPROACH - classical cohomology

$$
H^{\bullet}(X)=\bigoplus_{i} H^{i}(X)
$$

- $H^{i}(X)$ is a finite dimensional vector space over K and $H^{i}(X)=0$ for $i>2 d$.
- Poincaré Duality. There is a bilinear form $H^{i}(X) \times H^{2 d-i} \rightarrow H^{2 d} \simeq K$ allowing the identification

$$
H^{2 d-i}(X) \leadsto H_{i}(X)=\operatorname{Hom}\left(H^{i}(X), K\right)
$$

- Künneth formula $H^{\bullet}(X) \otimes H^{\bullet}(Y) \simeq H^{\bullet}(X \times Y)$
- Any morphism $f: X \rightarrow X$ defines a linear map $f^{(i)}: H^{i}(X) \rightarrow H^{i}(X)$ such that the $f^{(i)}$ constitute a homomorphism of algebras $f^{\bullet}: H^{\bullet}(X) \rightarrow H^{\bullet}(X)$.

$$
\operatorname{Fix}(f, X)=\sum_{i=0}^{2 d}(-1)^{n} \operatorname{Trace}\left(f^{(i)}\right)
$$

THE COHOMOLOGY APPROACH - classical cohomology

$$
H^{\bullet}(X)=\bigoplus_{i} H^{i}(X)
$$

- $H^{i}(X)$ is a finite dimensional vector space over K and $H^{i}(X)=0$ for $i>2 d$.
- Poincaré Duality. There is a bilinear form $H^{i}(X) \times H^{2 d-i} \rightarrow H^{2 d} \simeq K$ allowing the identification

$$
H^{2 d-i}(X) \leadsto H_{i}(X)=\operatorname{Hom}\left(H^{i}(X), K\right)
$$

- Künneth formula $H^{\bullet}(X) \otimes H^{\bullet}(Y) \simeq H^{\bullet}(X \times Y)$
- Any morphism $f: X \rightarrow X$ defines a linear map $f^{(i)}: H^{i}(X) \rightarrow H^{i}(X)$ such that the $f^{(i)}$ constitute a homomorphism of algebras $f^{\bullet}: H^{\bullet}(X) \rightarrow H^{\bullet}(X)$.

$$
\operatorname{Fix}(f, X)=\sum_{i=0}^{2 d}(-1)^{n} \operatorname{Trace}\left(f^{(i)}\right)
$$

- If Y is a nonsingular subvariety of X of dimension $d-1$ then there is a natural mapping $H^{i}(X) \rightarrow H^{i}(Y)$ which is bijective for $i \leq d-2$ and injective for $i=d-1$

THE COHOMOLOGY APPROACH - classical cohomology

$$
H^{\bullet}(X)=\bigoplus_{i} H^{i}(X)
$$

- Let $h \in H^{2}(X)$ and $L: a \rightarrow$ ah be the multiplication-by h map in $H^{\bullet}(X)$; then $L^{d-i}: H^{i}(X) \rightarrow H^{2 d-i}(X)$ is an isomorphism for $i \leq d$.
This implies that if we have a morphism $f: X \rightarrow X$ such that $f^{(2)}(h)=q h$ where $q>0$ is a rational number, then $g_{i}=q^{-i / 2} f^{(i)}$ is an automorphism of $H^{i}(X) \otimes K \bar{K}$ and if $\alpha_{i, j}$ are the eigenvalues of $f^{(i)}$ in \bar{K}, then $\left\{q^{i / 2} / \alpha_{i, j}\right\}_{i, j}=\left\{\alpha_{2 d-i, j} / q^{d-(i / 2)}\right\}$

THE COHOMOLOGY APPROACH - classical cohomology

$$
H^{\bullet}(X)=\bigoplus_{i} H^{i}(X)
$$

- Let $h \in H^{2}(X)$ and $L: a \rightarrow$ ah be the multiplication-by h map in $H^{\bullet}(X)$; then $L^{d-i}: H^{i}(X) \rightarrow H^{2 d-i}(X)$ is an isomorphism for $i \leq d$.
This implies that if we have a morphism $f: X \rightarrow X$ such that $f^{(2)}(h)=q h$ where $q>0$ is a rational number, then $g_{i}=q^{-i / 2} f^{(i)}$ is an automorphism of $H^{i}(X) \otimes K \bar{K}$ and if $\alpha_{i, j}$ are the eigenvalues of $f^{(i)}$ in \bar{K}, then $\left\{q^{i / 2} / \alpha_{i, j}\right\}_{i, j}=\left\{\alpha_{2 d-i, j} / q^{d-(i / 2)}\right\}$
- In each $H^{i}(X)$ for $i \leq d$ there is a subspace $A^{i}(X)$ stable under $f^{(i)}$ and on each $A^{i}(X)$, as v.s., there is a scalar product such that, if f verifies $f(h)=q h$, each g_{i} is a unitary mapping for that scalar product and all the $\alpha_{i, j}$ have absolute value $q^{i / 2}$.

THE COHOMOLOGY APPROACH - A THEOREM OF SERRE

Theorem
There does not exist a cohomology theory for schemes over \mathbb{F}_{q} with the following properties:

- Functorial
- Künneth formula
- $H^{1}(E)=\mathbb{Q}^{2}$

Fact

There's no cohomology theory with \mathbb{Q}-coefficients for schemes over \mathbb{F}_{q}.

THE COHOMOLOGY APPROACH - an exanpleof ferRe

 Let E be an elliptic curve.
Classical cohomology

For every coherent sheaf \mathcal{F} on a proper scheme X

$$
\chi(X)=\sum_{i}(-1)^{i} h^{i}(X, \mathcal{F})
$$

- Since $\chi(E)=2-2 g=0$ we have $H^{1}(E)=\mathbb{Q}^{2}$.
- There is a natural action of $\operatorname{End}(E)$ on $H^{1}(E)$ on the right.
- This action is compatible with products and sums (thanks to functoriality and Künneth formula).
- Thus, we have a representation of $\operatorname{End}(E)$ on $H^{1}(X)$ and also of $\operatorname{End}^{0}(E)=\operatorname{End}(E) \otimes \mathbb{Q}$.
- But, if E is supersingular, then $\operatorname{End}^{0}(E)$ is of rank 4 and we cannot have a dimension 2 representation over \mathbb{Q}.
- This also excludes $K=\mathbb{Q}_{p}$ and \mathbb{R} as $\operatorname{End}^{0}(E) \otimes \mathbb{Q}_{p}$ is still non-split.

THE COHOMOLOGY APPROACH - a gоoс сономоообч тнеорY

There are essentially two known approaches to construct a Weil cohomology theory

- $K=\mathbb{Q}_{\ell}, \ell \neq p$; Étale cohomology developed by Grothendieck.
- $K=\overline{\mathbb{Q}}_{p}$; Rigid cohomology.

THE COHOMOLOGY APPROACH - EAale morphlsus

Definition

We say that a morphism of schemes $f: X \rightarrow Y$ is étale if it is

- Flat, i.e., $f_{X}^{\#}: \mathcal{O}_{Y, f(x)} \rightarrow \mathcal{O}_{X, x}$ is flat for every x.
- Unramified, i.e., $\mathfrak{m}_{f(x)} \mathcal{O}_{X, x}=\mathfrak{m}_{x}$ and the extension $K(y) \rightarrow K(x)$ is separable.

For example, if L / K is a finite extension, then $\operatorname{Spec}(L) \rightarrow \operatorname{Spec}(K)$ is étale. Also, if L / K is of number fields, $\operatorname{Spec}\left(\mathcal{O}_{L}\right) \rightarrow \operatorname{Spec}\left(\mathcal{O}_{K}\right)$ is flat and for all $\mathfrak{q} \subseteq \mathcal{O}_{L}$ above $\mathfrak{p} \subseteq \mathcal{O}_{K}$ we have $k(\mathfrak{q}) / k(\mathfrak{p})$ separable.
Hence, $\operatorname{Spec}\left(\mathcal{O}_{L}\right) \rightarrow \operatorname{Spec}\left(\mathcal{O}_{K}\right)$ is unramified (and hence étale) at $\mathfrak{q} \subseteq \mathcal{O}_{L}$ if and only if $\mathfrak{q}\left(\mathcal{O}_{L}\right)_{\mathfrak{q}}$ is generated by $\mathfrak{p}=\mathfrak{q} \cap \mathcal{O}_{K}$, which is the usual definition of unramifiedness.

THE COHOMOLOGY APPROACH - pRoperties of tiale morphisms

Properties

- Open immersions are étale.
- Compositions of étale morphisms are étale.
- Base change of étale is étale

THE COHOMOLOGY APPROACH - Etaletopology

One does not need to have a topological space to build up a sheaf theory (and a cohomology theory for sheaves). Indeed, let \mathbf{C} be a category with, for each object \mathcal{U} of \mathbf{C} a distinguished set of families of maps $\left\{\mathcal{U}_{i} \rightarrow \mathcal{U}\right\}_{i \in I}$, called the covering of \mathcal{U}, that satisfy:

- For a covering $\left\{\mathcal{U}_{i} \rightarrow \mathcal{U}\right\}_{i \in I}$ of \mathcal{U} and any morphism $\mathcal{V} \rightarrow \mathcal{U}$ in \mathbf{C}, the fiber products $\left\{\mathcal{U}_{i} \times \mathcal{U} \mathcal{V} \rightarrow \mathcal{V}\right\}_{i \in I}$ exist and form a covering of \mathcal{V}
- If $\left\{\mathcal{U}_{i} \rightarrow \mathcal{U}\right\}_{i \in I}$ is a covering of \mathcal{U}, and for each $i \in I,\left\{\mathcal{V}_{i, j} \rightarrow \mathcal{U}_{i}\right\}_{j \in J}$ is a covering of \mathcal{U}_{i}, then $\left\{\mathcal{V}_{i, j} \rightarrow \mathcal{U}\right\}_{i, j}$ is a covering of \mathcal{U}
- For all \mathcal{U} in \mathbf{C}, the family $\{\mathcal{U} \rightarrow \mathcal{U}\}$ is a covering of \mathcal{U}.

Such a system of coverings is called a Grothendieck topology on \mathbf{C} and \mathbf{C} together with this topology is called a site.

Definition

We define the étale site of X (denoted $X_{e t}$) as a category $\mathbb{E t}_{X}$ with objects the étale morphisms $\mathcal{U} \rightarrow X$ and arrows the X-morphisms (the obvious commutative diagrams) $\phi: \mathcal{U} \rightarrow \mathcal{V}$.

THE COHOMOLOGY APPROACH - etalesheaff sxanples

A presheaf for the étale topology on X is a contravariant functor $\mathcal{F}: \mathbb{E} \mathrm{t}_{X} \rightarrow \mathrm{Ab}$ It is a sheaf if

$$
\mathcal{F}(\mathcal{U}) \rightarrow \prod_{i \in I} \mathcal{F}\left(\mathcal{U}_{i}\right) \rightrightarrows \prod_{i, j} \mathcal{F}\left(\mathcal{U}_{i} \times \mathcal{U}_{\mathcal{U}} \mathcal{U}_{j}\right)
$$

is exact for all étale coverings $\left\{\mathcal{U}_{i} \rightarrow \mathcal{U}\right\}_{i \in I}$
Constant sheaf. This takes any étale open set $(\mathcal{U} \rightarrow X)$ to a fixed abelian group A.

Sheaf of regular functions. This takes any étale open set $(\mathcal{U} \rightarrow X)$ of X to the space $\mathcal{O}(\mathcal{U})$ of regular functions of \mathcal{U}

Sheaf of invertible functions. It is denoted \mathbb{G}_{m} and it takes any étale open set $(\mathcal{U} \rightarrow X)$ of X to $\mathcal{O}^{\times}(\mathcal{U})$, the units of the regular functions of \mathcal{U}.

Sheaf of \mathbf{n}-th roots of unity. μ_{n} takes any étale open set $(\mathcal{U} \rightarrow X)$ of X to the n-th roots of unity in $\mathcal{O}(\mathcal{U})$.

THE COHOMOLOGY APPROACH - Etale conoonology

The functor

$$
\begin{aligned}
\operatorname{Sh}\left(X_{e t}\right) & \longrightarrow \mathrm{Ab} \\
\mathcal{F} & \longrightarrow \Gamma(X, \mathcal{F})
\end{aligned}
$$

is left exact and we can define $H^{r}\left(X_{e t},-\right)$ as its r-th right derived functor. One then has the usual properties

- For any sheaf $\mathcal{F}, H_{e t}^{0}(X, \mathcal{F})=H^{0}\left(X_{e t}, \mathcal{F}\right)=\Gamma(X, \mathcal{F})$.
- $H_{e t}^{r}(X, \mathcal{I})=0$ for $r>0$ if \mathcal{I} is injective
- Functoriality; a short exact sequence of sheaves

$$
0 \longrightarrow \mathcal{F}^{\prime} \longrightarrow \mathcal{F} \longrightarrow \mathcal{F}^{\prime \prime} \longrightarrow 0
$$

gives rise to a long exact sequence in cohomology

$$
0 \longrightarrow H_{e t}^{0}\left(X, \mathcal{F}^{\prime}\right) \longrightarrow H_{e t}^{0}(X, \mathcal{F}) \longrightarrow H_{e t}^{0}\left(X, \mathcal{F}^{\prime \prime}\right) \longrightarrow H_{e t}^{1}\left(X, \mathcal{F}^{\prime}\right) \longrightarrow \ldots
$$

THE COHOMOLOGY APPROACH - Exale cohonology for cunves

Étale cohomology of a curve

Let X be a nonsingular projective curve over K. For n invertible in K

$$
H_{e t}^{r}(X, \mathbb{Z} / n \mathbb{Z})= \begin{cases}\mathbb{Z} / n \mathbb{Z} & \text { if } r=0 \\ (\mathbb{Z} / n \mathbb{Z})^{2 g} & \text { if } r=1 \\ \mathbb{Z} / n \mathbb{Z} & \text { if } r=2\end{cases}
$$

Let X be a non-singular projective curve. We want to calculate $H_{e t}^{r}\left(X, \mathbb{Z} / \ell^{n} \mathbb{Z}\right)$ We define

$$
\begin{gathered}
\left.H_{e t}^{r}\left(X, \mathbb{Z}_{\ell}\right)=\lim _{\leftarrow}^{\leftarrow} H_{e t}^{r}\left(X, \mathbb{Z} / \ell^{n} \mathbb{Z}\right)\right) \\
H_{e t}^{r}\left(X, \mathbb{Q}_{\ell}\right)=H_{e t}^{r}\left(X, \mathbb{Z}_{\ell}\right) \otimes \mathbb{Q}_{\ell}
\end{gathered}
$$

THE COHOMOLOGY APPROACH - lefgchezzitace foomula

Theorem

We have the Lefschetz formula

$$
\# X\left(\mathbb{F}_{q}\right)=\sum_{i=0}^{2 d}(-1)^{n} \operatorname{Trace}\left(F, H^{r}\left(X_{e t}, \mathbb{Q}_{\ell}\right)\right)
$$

Theorem

Weil proved that the eigenvalues π_{i} of F on $H^{1}\left(X_{e t}, \mathbb{Q}_{\ell}\right)$ are algebraic integers with $\left|\pi_{i}\right|=q^{1 / 2}$.

Thus

$$
\left|\# X\left(\mathbb{F}_{q}\right)-(q+1)\right|=\left|\operatorname{Trace}\left(F, H^{1}\left(X_{e t}, \mathbb{Q}_{\ell}\right)\right)\right| \leq \sum_{i=1}^{2 g}\left|\pi_{i}\right| \leq 2 g \sqrt{q}
$$

THE COHOMOLOGY APPROACH - de ahm cononoogy

Let K be a field, and A a finitely generated K-algebra.

Definition

We define the module of Kähler differentials as

$$
\Omega_{A / K}=\frac{\text { free module on formal symbols } d r \quad(r \in A)}{\langle d r(r \in K), d(r+s)-d r-d s, d(r s)-r d s-s d r\rangle}
$$

We set $\Omega_{A / K}^{i}=\Lambda^{i} \Omega_{A / K}$; there is a derivation map

$$
\begin{gathered}
d: \Omega_{A / K}^{i} \longrightarrow \Omega_{A / K}^{i+1} \\
f_{0} d f_{1} \wedge \ldots \wedge d f_{i} \longrightarrow d f_{0} \wedge d f_{1} \wedge \ldots \wedge d f_{i}
\end{gathered}
$$

We get the de Rahm complex $\Omega_{A / K}^{\bullet}$ and we define the de Rham cohomology of A as

$$
H_{d R}^{i}(A / K)=H^{i}\left(\Omega_{A / K}^{\bullet}\right)
$$

If $X=\operatorname{Spec}(A)$, then $H_{d R}^{i}(X / K)=H_{d R}^{i}(A / K)$.

THE COHOMOLOGY APPROACH - MONsKY-washnitzer cohomolog' Lcoolid ?

Let $\operatorname{char}(k)=p$. We set R to be the Witt vectors of k. We have $R / p R=k$. We set $K=\operatorname{Frac}(R)$.

Elkik-Arabia Theorem

There is a unique (up to isomorphism) R algebra \hat{A} complete w.r.t. the p-adic topology, flat over R, such that

$$
\hat{A} \otimes_{R} k=A
$$

For $A=k[x]$ this is

$$
\hat{A}=R\langle x\rangle=\left\{\left.\sum_{n=0}^{+\infty} a_{n} x^{n}| | a_{n}\right|_{p} \rightarrow 0\right\}
$$

Problem

If we try to mimic the de Rahm construction we get infinite dimensional objects

THE COHOMOLOGY APPROACH - MONsKY-washnitzer cohomolog' Lcoolid ?

Let $\operatorname{char}(k)=p$. We set R to be the Witt vectors of k. We have $R / p R=k$. We set $K=\operatorname{Frac}(R)$.

Monsky-Washnitzer

We can consider a subring

$$
A^{\dagger}=\left\{\sum_{n=0}^{+\infty} a_{n} x^{n}\left|\lim _{n \rightarrow \infty}\right| a_{n} \mid \rho^{n}=0 \text { some } \rho>1\right\}
$$

Elements of \hat{A} are functions on the closed unit disc. A^{\dagger} consists of functions on the closed unit disc which in fact converge on some bigger disc.

Monsky-Washnitzer cohomology

We define

$$
H_{M W}^{i}(A / K)=H^{i}\left(\Omega_{A^{\dagger} / K}^{\bullet}\right)
$$

THE COHOMOLOGY APPROACH - Mw cohonology for curves

- Suppose X is an hyperelliptic curve $y^{2}=P(x)$ of genus $g=(\operatorname{deg}(P)-1) / 2$
- Its coordinate ring is $A=\frac{K[x, y, z]}{\left(y^{2}-P(X), y z-1\right)}=\frac{K\left[x, y, y^{-1}\right]}{\left(y^{2}-P(X)\right)}$
- Construct A^{∞}, the \mathfrak{p}-adic completion of A.
- Consider the weak completion of A :

$$
A^{\dagger}=\left\{\left.\sum_{n=-\infty}^{+\infty} \frac{B_{n}(x)}{y^{n}} \right\rvert\, B_{n} \in K[x], \operatorname{deg} B_{n} \leq 2 g\right\}
$$

with the further condition that $\nu_{p}\left(B_{n}(x)\right)$ grows faster than some linear function of $|n|$ as $|n| \rightarrow \pm \infty$.

- The only non-trivial MW cohomology groups are H^{0} and H^{1}.
- The first cohomology group splits into two eigenspaces under the hyperelliptic involution

$$
\begin{aligned}
& H_{M W}^{1}(X / K)^{+} \text {with basis }\left\{x^{i} d x / y^{2}\right\}_{0 \leq i \leq 2 g} \\
& H_{M W}^{1}(X / K)^{-} \text {with basis }\left\{x^{i} d x / 2 y\right\}_{0 \leq i \leq 2 g-1}
\end{aligned}
$$

THE COHOMOLOGY APPDOACH - mw lefgcherz formula

Lefschetz formula

$$
\# X\left(\mathbb{F}_{q^{r}}\right)=q^{r}-\operatorname{Trace}\left(\mathrm{qF}^{-1}, \mathrm{H}_{\mathrm{MW}}^{1}(\mathrm{X} / \mathrm{K})\right)
$$

- K is an unramified extension of \mathbb{Q}_{p}. Thus, we have a unique automorphism F_{K} lifting the Frobenius of \mathbb{F}_{q}. Let F denote a p-power Frobenius lift on A^{\dagger} :

$$
\begin{gathered}
F(x)=x^{p} \\
F(y)=\left(F_{K}(P)\left(x^{p}\right)\right)^{1 / 2}
\end{gathered}
$$

THE COHOMOLOGY APPDOACH - mw lefscherz formula

Lefschetz formula

$$
\# X\left(\mathbb{F}_{q^{r}}\right)=q^{r}-\operatorname{Trace}\left(\mathrm{qF}^{-1}, \mathrm{H}_{\mathrm{MW}}^{1}(\mathrm{X} / \mathrm{K})\right)
$$

- K is an unramified extension of \mathbb{Q}_{p}. Thus, we have a unique automorphism F_{K} lifting the Frobenius of \mathbb{F}_{q}. Let F denote a p-power Frobenius lift on A^{\dagger} :

$$
\begin{gathered}
F(x)=x^{p} \\
F(y)=\left(F_{K}(F)\left(x^{p}\right)-P(x)^{p}+P(x)^{p}\right)^{1 / 2}
\end{gathered}
$$

THE COHOMOLOGY APPDOACH - mw lefscherz formula

Lefschetz formula

$$
\# X\left(\mathbb{F}_{q^{r}}\right)=q^{r}-\operatorname{Trace}\left(\mathrm{qF}^{-1}, \mathrm{H}_{\mathrm{MW}}^{1}(\mathrm{X} / \mathrm{K})\right)
$$

- K is an unramified extension of \mathbb{Q}_{p}. Thus, we have a unique automorphism F_{K} lifting the Frobenius of \mathbb{F}_{q}. Let F denote a p-power Frobenius lift on A^{\dagger} :

$$
\begin{gathered}
F(x)=x^{p} \\
F(y)=P(x)^{p / 2}\left(1+\frac{F_{K}(P)\left(x^{p}\right)-P(x)^{p}}{P(x)^{p}}\right)^{1 / 2}
\end{gathered}
$$

THE COHOMOLOGY APPDOACH - mw lefgcherz formula

Lefschetz formula

$$
\# X\left(\mathbb{F}_{q^{r}}\right)=q^{r}-\operatorname{Trace}\left(\mathrm{qF}^{-1}, \mathrm{H}_{\mathrm{MW}}^{1}(\mathrm{X} / \mathrm{K})\right)
$$

- K is an unramified extension of \mathbb{Q}_{p}. Thus, we have a unique automorphism F_{K} lifting the Frobenius of \mathbb{F}_{q}. Let F denote a p-power Frobenius lift on A^{\dagger} :

$$
\begin{gathered}
F(x)=x^{p} \\
F(y)=y^{p}\left(1+\frac{F_{K}(P)\left(x^{p}\right)-P(x)^{p}}{P(x)^{p}}\right)^{1 / 2}
\end{gathered}
$$

THE COHOMOLOGY APPDOACH - mw lefscherz formula

Lefschetz formula

$$
\# X\left(\mathbb{F}_{q^{r}}\right)=q^{r}-\operatorname{Trace}\left(\mathrm{qF}^{-1}, \mathrm{H}_{\mathrm{MW}}^{1}(\mathrm{X} / \mathrm{K})\right)
$$

- K is an unramified extension of \mathbb{Q}_{p}. Thus, we have a unique automorphism F_{K} lifting the Frobenius of \mathbb{F}_{q}. Let F denote a p-power Frobenius lift on A^{\dagger} :

$$
\begin{gathered}
F(x)=x^{p} \\
F(y)=y^{p} \sum_{i=0}^{\infty}\binom{1 / 2}{i} \frac{\left(F_{K}(P)\left(x^{p}\right)-P(x)^{p}\right)^{i}}{y^{2 i p}}
\end{gathered}
$$

Lefschetz formula

$$
\# X\left(\mathbb{F}_{q^{r}}\right)=q^{r}-\operatorname{Trace}\left(\mathrm{qF}^{-1}, \mathrm{H}_{\mathrm{MW}}^{1}(\mathrm{X} / \mathrm{K})\right)
$$

- K is an unramified extension of \mathbb{Q}_{p}. Thus, we have a unique automorphism F_{K} lifting the Frobenius of \mathbb{F}_{q}. Let F denote a p-power Frobenius lift on A^{\dagger} :

$$
\begin{gathered}
F(x)=x^{p} \\
F(y)=y^{p} \sum_{i=0}^{\infty}\binom{1 / 2}{i} \frac{\left(F_{K}(P)\left(x^{p}\right)-P(x)^{p}\right)^{i}}{y^{2 i p}}
\end{gathered}
$$

- Now we apply it to $\mathrm{H}_{\mathrm{MW}}^{1}\left(X^{\prime}\right)$:

$$
F^{*} \omega_{i}=\frac{x^{i p} d\left(x^{p}\right)}{2 F(y)}
$$

Lefschetz formula

$$
\# X\left(\mathbb{F}_{q^{r}}\right)=q^{r}-\operatorname{Trace}\left(\mathrm{qF}^{-1}, \mathrm{H}_{\mathrm{MW}}^{1}(\mathrm{X} / \mathrm{K})\right)
$$

- K is an unramified extension of \mathbb{Q}_{p}. Thus, we have a unique automorphism F_{K} lifting the Frobenius of \mathbb{F}_{q}. Let F denote a p-power Frobenius lift on A^{\dagger} :

$$
\begin{gathered}
F(x)=x^{p} \\
F(y)=y^{p} \sum_{i=0}^{\infty}\binom{1 / 2}{i} \frac{\left(F_{K}(P)\left(x^{p}\right)-P(x)^{p}\right)^{i}}{y^{2 i p}}
\end{gathered}
$$

- Now we apply it to $\mathrm{H}_{\mathrm{MW}}^{1}\left(X^{\prime}\right)$:

$$
F^{*} \omega_{i}=p x^{i p+p-1} \frac{d x}{2 F(y)}
$$

Lefschetz formula

$$
\# X\left(\mathbb{F}_{q^{r}}\right)=q^{r}-\operatorname{Trace}\left(\mathrm{qF}^{-1}, \mathrm{H}_{\mathrm{MW}}^{1}(\mathrm{X} / \mathrm{K})\right)
$$

- K is an unramified extension of \mathbb{Q}_{p}. Thus, we have a unique automorphism F_{K} lifting the Frobenius of \mathbb{F}_{q}. Let F denote a p-power Frobenius lift on A^{\dagger} :

$$
\begin{gathered}
F(x)=x^{p} \\
F(y)=y^{p} \sum_{i=0}^{\infty}\binom{1 / 2}{i} \frac{\left(F_{K}(P)\left(x^{p}\right)-P(x)^{p}\right)^{i}}{y^{2 i p}}
\end{gathered}
$$

- Now we apply it to $\mathrm{H}_{\mathrm{Mw}}^{1}\left(X^{\prime}\right)$:

$$
F^{*} \omega_{i}=p x^{i p+p-1} \frac{y}{F(y)} \frac{d x}{2 y}
$$

Lefschetz formula

$$
\# X\left(\mathbb{F}_{q^{r}}\right)=q^{r}-\operatorname{Trace}\left(\mathrm{qF}^{-1}, \mathrm{H}_{\mathrm{MW}}^{1}(\mathrm{X} / \mathrm{K})\right)
$$

- K is an unramified extension of \mathbb{Q}_{p}. Thus, we have a unique automorphism F_{K} lifting the Frobenius of \mathbb{F}_{q}. Let F denote a p-power Frobenius lift on A^{\dagger} :

$$
\begin{gathered}
F(x)=x^{p} \\
F(y)=y^{p} \sum_{i=0}^{\infty}\binom{1 / 2}{i} \frac{\left(F_{K}(P)\left(x^{p}\right)-P(x)^{p}\right)^{i}}{y^{2 i p}}
\end{gathered}
$$

- Now we apply it to $H_{M W}^{1}\left(X^{\prime}\right)$:

$$
F^{*} \omega_{i}=p x^{i p+p-1} y\left(y^{-p} \sum_{k=0}^{+\infty}\binom{-1 / 2}{i} \frac{\left(F_{K}(P)\left(x^{p}\right)-P(x)^{p}\right)^{i}}{y^{2 p k}}\right) \frac{d x}{2 y}
$$

INTERSECTION TLEORY - suracaces

By surface, we refer to a smooth projective variety of dimension 2 over an algebraically closed field k. By a curve on a surface, we mean an effective divisor on the surface. We say that two curves C and D meet transversely if, for every common point P, their local defining equations f and g generate the maximal ideal of the local ring $\mathcal{O}_{P, x}$.

We would like to define a bilinear form

$$
\operatorname{Div}(X) \times \operatorname{Div}(X) \rightarrow \mathbb{Z} \quad(C, D) \mapsto C . D
$$

that expresses the intersection number of two curves on a surface.

- If C and D meet transversely at d points, then $C . D=d$
- $C . D=D . C$ and $\left(C_{1}+C_{2}\right) \cdot D=C_{1} \cdot D+C_{2} \cdot D$
- The intersection number depends only on linear equivalence classes

$$
C . D=\sum_{P \in C \cap D} \operatorname{len}\left(\mathcal{O}_{P, X} /(f, g)\right)
$$

INTERSECTION THEORV - REMaNw-.مch for suaracess

Lemma (Adjunction formula)

Let C be nonsingular curve on X of genus g. Then the following holds:

$$
g=\frac{C \cdot\left(C+K_{X}\right)}{2}+1
$$

Riemann-Roch

Let X be a surface and D a divisor on X. Let K_{X} be the canonical class, $\ell(D)=\operatorname{dim}_{k} H^{0}\left(X, \mathcal{O}_{X}\right)$ and $s(D)=\operatorname{dim}_{k} H^{1}\left(X, \mathcal{O}_{X}\right)$ and the arithmetic genus of $X, \rho_{a}=\chi\left(\mathcal{O}_{X}\right)-1$. Then,

$$
\ell(D)-s(D)+\ell\left(K_{X}-D\right)=\frac{1}{2}\left(D \cdot\left(D-K_{X}\right)\right)+\chi\left(\mathcal{O}_{X}\right)
$$

INTERSECTION THEORY - Hooce NoEx Heorem

Let H be a very ample divisor on a surface X. Then for a curve C on X, the degree of C under the embedding given by H into \mathbb{P}^{n} coincides with C.H.

Lemma

Let H be an ample divisor on X, and let D be a divisor such that $D . H>0$ and $D^{2}>0$. Then for all $n \gg 0, n D$ is linearly equivalent to an effective divisor.

Hodge Index Theorem

Let H be an ample divisor on the surface X and let D be a non zero divisor with $D . H=0$. Then $D^{2}<0$.

Nakai-Moishezon criterion

A divisor D on a surface X is ample if and only if $D^{2}>0$ and $D . C>0$ for all irreducible curves C in X.

INTERSECTION THEORY - wel bound

The idea is to use the intersection theory on the surface $\bar{X} \times_{\overline{\mathbb{F}}_{q}} \bar{X}$.

- For every morphism of curves $f: X \rightarrow Y$, we have a prime correspondence

$$
\Gamma_{f}:=\left(I d_{X} \times f\right)(X) \subset X \times Y
$$

called the graph of f.

- We let Δ be the graph of the identity morphism $I d_{X}: X \rightarrow X$, also called the diagonal correspondence
- We let $\Gamma=\Gamma_{F}$ be the graph of Frobenius given by the image of the closed immersion

$$
\bar{X} \rightarrow \bar{X} \times \bar{X} \quad x \mapsto(x, F(x))
$$

Notice that this is a prime correspondence, and therefore a curve of genus $g=g(X)$.

- Since Γ and Δ intersect transversely at all points where they intersect

$$
N(X)=\# \operatorname{Fix}(F, \bar{X})=\Gamma . \Delta
$$

INTERSECTION THEORY - proung the wel bouno

- We have $\Delta^{2}=2-2 g$ as Δ^{2} is the degree of the normal bundle to the diagonal embedding $\bar{X} \rightarrow \bar{X} \times \bar{X}$; this is the tangent bundle to \bar{X}, which has degree $2-2 g$.
- To compute Γ^{2} we note that Γ^{2}

$$
2 g-2=\Gamma^{2}+\Gamma \cdot K_{\bar{X} \times \bar{x}}
$$

We can express $K_{\bar{x} \times \bar{x}}$ as the sum of the pullbacks $\pi_{1} * K_{\bar{x}}+\pi_{2}^{*} K_{\bar{x}}$. Now Γ intersects $\bar{X} \times\{*\}$ and $\{*\} \times \bar{X}$ with multiplicity 1 and q. Since $\operatorname{deg} K_{\bar{X}}=2 g-2$, this gives $\Gamma^{2}=2 g-2-(q+1)(2 g-2)=q(2-2 g)$.

Proposition

Let D be any divisor on $\bar{X} \times \bar{X}$ with $a=D .(\bar{X} \times\{*\})$ and $b=D \cdot(\{*\} \times \bar{X})$. Then

$$
|D \cdot \Delta-(a+b)| \leq \sqrt{2 g\left(2 a b-D^{2}\right)}
$$

- The Weil bound follows by taking $D=\Gamma$ for which $a=1$ and $b=q$.

WELL BOUND - a frpst remement

Theorem

We have

$$
|N-(q+1)| \leq g\left[2 q^{1 / 2}\right]
$$

We have seen

$$
\# X\left(\mathbb{F}_{q^{n}}\right)=1+q^{n}-\sum_{i=1}^{2 g} \pi_{i}^{n}
$$

Proposition

One can order the π_{i} in such a way that $\pi_{g+1}, \ldots, \pi_{2 g}$ are equal to $\bar{\pi}_{1}, \ldots, \bar{\pi}_{g}$ respectively.

- It suffices to show that if $q=q_{0}^{2}$ then q_{0} and $-q_{0}$ both occur with even multiplicity.
- all the other cases follow by the stability under \mathcal{G} a $(\overline{\mathbb{Q}} / \mathbb{Q}))$.

PROOF OF TLE REFINED WELL BOUND

- $N(X)-(q+1)=-\sum_{i=1}^{2 g} \pi_{i}=-\sum_{i=1}^{g} x_{i}$ where $x_{i}=\pi_{i}+\bar{\pi}_{i}$
- Let $m=\left[2 q^{1 / 2}\right]$, then $\left|x_{i}\right|<m+1$ for every i.
- Let $y_{i}=m+1+x_{i}$, then $y_{i}>0$.
- The y_{i} 's are stable under Galois conjugation and thus they are algebraic integers. Hence their product is a natural number.
- The arithmetic-geometric mean inequality gives

$$
\frac{y_{1}+\ldots+y_{g}}{g} \geq\left(y_{1} \cdots y_{g}\right)^{1 / g} \geq 1
$$

Thus

$$
\frac{y_{1}+\ldots+y_{g}}{g}=m+1+\frac{1}{g} \sum_{i=1}^{g} x_{i} \geq 1
$$

- This gives the inequality $\operatorname{Trace}(F) \geq-g m$. For the other inequality, one applies the same proof to the opposite of the Frobenius.

REFINED WEIL BOUND - an Exanple

```
sage: p = 101
....: prec = 10
....: R.<x> = QQ['x']
....: A,forms=monsky_washnitzer.matrix_of_frobenius_hyperelliptic(x^5 + 2*x^2 + x+1,p,prec);
Isage: EQ=HyperellipticCurve(x^5+2*x^2+\overline{x}+1)
....: K=Qp(p,prec)
....: E=EQ.change_ring(K)
....: M=A.change_ring(ZZ); M
[ 56493213215724647323 91221651972720789035 109467512373478956972 31096679099710501963]
[ 305880006065515507587 85600942703587230697 68841142676393372694 13975965182916593107]
[ 69060715659998179697 103331531349894232384 27136296461538705801 78187521694516401570]
[ 12771691150105329442 47970135072000782451 95042490856601645827 51693972701390318174]
[sage: P=A.charpoly();P;
[sage: P
(1 + 0(101^10))*x^4 + (7 + 0(101^10))*x^3 + (66 + 101 + 0(101^10))*x^2 + (7*101 + 0(101^10))*x + 101^2 + 0(101^10)
[sage: R=P.roots();
Isage: R
    [(20 + 93*101 + 67*101^2 + 57*101^3 + 101^4 + 63*101^5 + 10*101^6 + 13*101^7 + 45*101^8 + 99*101^9 + 0(101^10),
    1),
    (74 + 27*101 + 18*101^2 + 64*101^3 + 5*101^5 + 64*101^6 + 65*101^7 + 3*101^8 + 57*101^9 + 0(101^10) ,
    1),
    (96*101 + 93*101^2 + 89*101^3 + 43*101^4 + 65*101^5 + 30*101^6 + 28*101^7 + 83*101^8 + 24*101^9 + 0(101^10) ,
        1),
    (86*101 + 21*101^2 + 91*101^3 + 54*101^4 + 68*101^5 + 96*101^6 + 94*101^7 + 69*101^8 + 20*101^9 + 0(101^10),
        1)]
[sage: -(R[0][0]+R[1][0]+R[2][0]+R[3][0])
7 + 0(101^10)
[sage: R[0][0]*R[2][0]
101 + 47*101^9 + 0(101^10)
[sage: R[1][0]*R[3][0]
101 + 18*101^9 + O(101^10)
sage: K = GF(101)
....: PR.<t> = PolynomialRing(K)
....: EH = HyperellipticCurve(t^5 + 2*t^2 + t + 1)
....: EH.cardinality()
109
sage:
```


MORE ON THE REFINED WEIL BOUND

Theorem

If $\operatorname{Trace}(F)= \pm g m$, then the x_{i} 's are equal to $\pm m$.

Corollary

If $N=1+q+2 m$, then the eigenvalues of the Frobenius are equal to $\left(-m \pm \sqrt{m^{2}-4 q}\right) / 2(g$ times each $)$.

TRACE OF ALCEBRAIC INTECERS - a theorem of suyth

Let A be a g-dimensional abelian variety over \mathbb{F}_{q}.

- If Trace $(F)= \pm g m$ (defect 0 case) then $\left(x_{1}, \ldots, x_{g}\right)= \pm(m, \ldots, m)$.
- If Trace $(F)= \pm(g m-1)$ (defect 1 case) there are two possibilities for $\left(x_{1}, \ldots, x_{g}\right)$. Namely,

$$
\pm(\underbrace{m, m, \ldots, m}_{g-1}, m-1) \quad \text { and } \quad \pm(\underbrace{m, m, \ldots, m}_{g-2}, m+\frac{-1 \pm \sqrt{5}}{2})
$$

- If Trace $(F)= \pm(g m-2)$ (defect 2$)$ there are 7 possibilities for $\left(x_{1}, \ldots, x_{g}\right)$.

$$
\begin{cases} \pm(m, m, \ldots, m, m-2) & (g \geq 1) \\ \pm(m, \ldots, m, m-1, m-1) & (g \geq 2) \\ \pm(m, \ldots, m, m+\sqrt{2}-1, m-\sqrt{2}-1) & (g \geq 2) \\ \pm(m, \ldots, m, m+\sqrt{3}-1, m-\sqrt{3}-1) & (g \geq 2) \\ \pm(m, \ldots, m, m-1, m+(-1 \pm \sqrt{5}) / 2) & (g \geq 3) \\ \pm(m, \ldots, m, m+(-1 \pm \sqrt{5}) / 2, m+(-1 \pm \sqrt{5}) / 2) & (g \geq 4) \\ \pm\left(m, \ldots, m, m+1-4 \cos ^{2}(a \pi / 7)\right), \quad a=1,2,3 & (g \geq 3)\end{cases}
$$

TRACE OF ALCEBRAIC INTEGERS - atheorem of filgeel

Theorem

Let α be a totally positive algebraic integer of degree $\operatorname{deg}(\alpha)$. If α is neither 1 nor $(3 \pm \sqrt{5}) / 2$ then

$$
\operatorname{Trace}(\alpha)>\frac{3}{2} \operatorname{deg}(\alpha)
$$

- If $\alpha=1$, then $\operatorname{Trace}(\alpha) / \operatorname{deg}(\alpha)=1$.
- If $\alpha=(3 \pm \sqrt{5}) / 2$, then Trace $(\alpha) / \operatorname{deg}(\alpha)=3 / 2$.
- If $\alpha \neq 1,(3 \pm \sqrt{5}) / 2$ then Smyth proved Trace $(\alpha) / \operatorname{deg}(\alpha) \geq 5 / 3$.

Corollary

Let $k(\alpha)=\operatorname{Trace}(\alpha)-\operatorname{deg}(\alpha)$. Then:

- If $k(\alpha)=0$, then $\alpha=1$.
- If $k(\alpha)=1$, then $\alpha=2$ or $\alpha=(3 \pm \sqrt{5}) / 2$.
- If $k(\alpha)=2$, then $\alpha=3$ or $\alpha=2 \pm \sqrt{2}$ or $2 \pm \sqrt{3}$ or α is one of the conjugates of $4 \cos ^{2}(\pi / 7)$

TRACE OF ALGEBRAIC INTECERS - prooo of the coonollapy

Suppose α is not in the list. Then by Siegel's theorem $k(\alpha) / \operatorname{deg}(\alpha)>1 / 2$, i.e., $\operatorname{deg}(\alpha)<2 k(\alpha)$

TRACE OF ALGEBRAIC INTECERS - prooo of the coonollapy

Suppose α is not in the list. Then by Siegel's theorem $k(\alpha) / \operatorname{deg}(\alpha)>1 / 2$, i.e., $\operatorname{deg}(\alpha)<2 k(\alpha)$

- If $k(\alpha)<2$, then $\operatorname{deg}(\alpha)=1$ and $\alpha=1,2$.

TRACE OF ALGEBRAIC INTECERS - prooo of the coonollapy

Suppose α is not in the list. Then by Siegel's theorem $k(\alpha) / \operatorname{deg}(\alpha)>1 / 2$, i.e., $\operatorname{deg}(\alpha)<2 k(\alpha)$

- If $k(\alpha)<2$, then $\operatorname{deg}(\alpha)=1$ and $\alpha=1,2$.
- If $k(\alpha)=2$, then $\operatorname{deg}(\alpha)<4$

TRACE OF ALGEBRAIC INTECERS - prooo of the coonollapy

Suppose α is not in the list. Then by Siegel's theorem $k(\alpha) / \operatorname{deg}(\alpha)>1 / 2$, i.e., $\operatorname{deg}(\alpha)<2 k(\alpha)$

- If $k(\alpha)<2$, then $\operatorname{deg}(\alpha)=1$ and $\alpha=1,2$.
- If $k(\alpha)=2$, then $\operatorname{deg}(\alpha)<4$
- $\operatorname{deg}(\alpha)=1$ gives $\alpha=3$

TRACE OF ALCEBRAIC INTECERS - proof of the cooollapy

Suppose α is not in the list. Then by Siegel's theorem $k(\alpha) / \operatorname{deg}(\alpha)>1 / 2$, i.e., $\operatorname{deg}(\alpha)<2 k(\alpha)$

- If $k(\alpha)<2$, then $\operatorname{deg}(\alpha)=1$ and $\alpha=1,2$.
- If $k(\alpha)=2$, then $\operatorname{deg}(\alpha)<4$
- $\operatorname{deg}(\alpha)=1$ gives $\alpha=3$
- $\operatorname{deg}(\alpha)=2$ gives Trace $(\alpha)=4$ and α is root of $x^{2}-4 x+n$ with all conjugates (roots) positive. Then $n=1,2,3$ and $\alpha=3, \alpha=2 \pm \sqrt{2}$ or $2 \pm \sqrt{3}$

TRACE OF ALGEBRAIC INTEGERS - prooof of the coonollapy

Suppose α is not in the list. Then by Siegel's theorem $k(\alpha) / \operatorname{deg}(\alpha)>1 / 2$, i.e., $\operatorname{deg}(\alpha)<2 k(\alpha)$

- If $k(\alpha)<2$, then $\operatorname{deg}(\alpha)=1$ and $\alpha=1,2$.
- If $k(\alpha)=2$, then $\operatorname{deg}(\alpha)<4$
- $\operatorname{deg}(\alpha)=1$ gives $\alpha=3$
- $\operatorname{deg}(\alpha)=2$ gives Trace $(\alpha)=4$ and α is root of $x^{2}-4 x+n$ with all conjugates (roots) positive. Then $n=1,2,3$ and $\alpha=3, \alpha=2 \pm \sqrt{2}$ or $2 \pm \sqrt{3}$
- $\operatorname{deg}(\alpha)=3$ gives the roots of a cubic polynomial $P(x)=x^{3}-5 x^{2}+p x+q$ with positive roots.

TRACE OF ALGEBRAIC INTEGERS - prooof of the coonollary

Suppose α is not in the list. Then by Siegel's theorem $k(\alpha) / \operatorname{deg}(\alpha)>1 / 2$, i.e., $\operatorname{deg}(\alpha)<2 k(\alpha)$

- If $k(\alpha)<2$, then $\operatorname{deg}(\alpha)=1$ and $\alpha=1,2$.
- If $k(\alpha)=2$, then $\operatorname{deg}(\alpha)<4$
- $\operatorname{deg}(\alpha)=1$ gives $\alpha=3$
- $\operatorname{deg}(\alpha)=2$ gives Trace $(\alpha)=4$ and α is root of $x^{2}-4 x+n$ with all conjugates (roots) positive. Then $n=1,2,3$ and $\alpha=3, \alpha=2 \pm \sqrt{2}$ or $2 \pm \sqrt{3}$
- $\operatorname{deg}(\alpha)=3$ gives the roots of a cubic polynomial $P(x)=x^{3}-5 x^{2}+p x+q$ with positive roots.
$1 \leq p \leq 8$ since the derivative must have 2 positive roots;

TRACE OF ALGEBRAIC INTEGERS - prooof of the coonollary

Suppose α is not in the list. Then by Siegel's theorem $k(\alpha) / \operatorname{deg}(\alpha)>1 / 2$, i.e., $\operatorname{deg}(\alpha)<2 k(\alpha)$

- If $k(\alpha)<2$, then $\operatorname{deg}(\alpha)=1$ and $\alpha=1,2$.
- If $k(\alpha)=2$, then $\operatorname{deg}(\alpha)<4$
- $\operatorname{deg}(\alpha)=1$ gives $\alpha=3$
- $\operatorname{deg}(\alpha)=2$ gives Trace $(\alpha)=4$ and α is root of $x^{2}-4 x+n$ with all conjugates (roots) positive. Then $n=1,2,3$ and $\alpha=3, \alpha=2 \pm \sqrt{2}$ or $2 \pm \sqrt{3}$
- $\operatorname{deg}(\alpha)=3$ gives the roots of a cubic polynomial $P(x)=x^{3}-5 x^{2}+p x+q$ with positive roots.
$1 \leq p \leq 8$ since the derivative must have 2 positive roots;
$1 \leq q \leq 4$ by the arithmetic-geometric mean inequality;

TRACE OF ALGEBRAIC INTEGERS - prooof of the coonollary

Suppose α is not in the list. Then by Siegel's theorem $k(\alpha) / \operatorname{deg}(\alpha)>1 / 2$, i.e., $\operatorname{deg}(\alpha)<2 k(\alpha)$

- If $k(\alpha)<2$, then $\operatorname{deg}(\alpha)=1$ and $\alpha=1,2$.
- If $k(\alpha)=2$, then $\operatorname{deg}(\alpha)<4$
- $\operatorname{deg}(\alpha)=1$ gives $\alpha=3$
- $\operatorname{deg}(\alpha)=2$ gives Trace $(\alpha)=4$ and α is root of $x^{2}-4 x+n$ with all conjugates (roots) positive. Then $n=1,2,3$ and $\alpha=3, \alpha=2 \pm \sqrt{2}$ or $2 \pm \sqrt{3}$
- $\operatorname{deg}(\alpha)=3$ gives the roots of a cubic polynomial $P(x)=x^{3}-5 x^{2}+p x+q$ with positive roots.
$1 \leq p \leq 8$ since the derivative must have 2 positive roots;
$1 \leq q \leq 4$ by the arithmetic-geometric mean inequality;
$p \geq 3 q^{2 / 3} \geq 3$ by the arithmetic-geometric mean inequality;

TRACE OF ALGEBRAIC INTEGERS - prooo of the cooollary

Suppose α is not in the list. Then by Siegel's theorem $k(\alpha) / \operatorname{deg}(\alpha)>1 / 2$, i.e., $\operatorname{deg}(\alpha)<2 k(\alpha)$

- If $k(\alpha)<2$, then $\operatorname{deg}(\alpha)=1$ and $\alpha=1,2$.
- If $k(\alpha)=2$, then $\operatorname{deg}(\alpha)<4$
- $\operatorname{deg}(\alpha)=1$ gives $\alpha=3$
- $\operatorname{deg}(\alpha)=2$ gives Trace $(\alpha)=4$ and α is root of $x^{2}-4 x+n$ with all conjugates (roots) positive. Then $n=1,2,3$ and $\alpha=3, \alpha=2 \pm \sqrt{2}$ or $2 \pm \sqrt{3}$
- $\operatorname{deg}(\alpha)=3$ gives the roots of a cubic polynomial $P(x)=x^{3}-5 x^{2}+p x+q$ with positive roots.
$1 \leq p \leq 8$ since the derivative must have 2 positive roots;
$1 \leq q \leq 4$ by the arithmetic-geometric mean inequality;
$p \geq 3 q^{2 / 3} \geq 3$ by the arithmetic-geometric mean inequality;
Since we need real roots (positive discriminant) we remain with 4 possibilities $(p, q) \in\{\underbrace{(6,2),(5,1),(7,2)}_{\text {reducible polynomials }},(6,1)\}$

TRACE OF ALCEBRAIC INTCGERS - proof of suтth theodem

- Let $P(X)=X^{g}-a_{1} X^{g-1}+\ldots$ be the polynomial $\prod_{i}\left(X-m-1+x_{i}\right)$.

TRACE OF ALCEBRAIC INTCGERS - proof of suтth theodem

- Let $P(X)=X^{g}-a_{1} X^{g-1}+\ldots$ be the polynomial $\prod_{i}\left(X-m-1+x_{i}\right)$.
- Its coefficients are in \mathbb{Z}, its roots are real and positive, and its coefficient a_{1} is equal to $g m+g-\operatorname{Trace}(F)$.

TRACE OF ALCEBRAIC INTCGERS - proof of suwtht theoorem

- Let $P(X)=X^{g}-a_{1} X^{g-1}+\ldots$ be the polynomial $\prod_{i}\left(X-m-1+x_{i}\right)$.
- Its coefficients are in \mathbb{Z}, its roots are real and positive, and its coefficient a_{1} is equal to $g m+g-\operatorname{Trace}(F)$.
- The defect of P is $k(P)=a_{1}-g=g m-\operatorname{Trace}(F)$ and we assumed it $=0,1,2$.

TRACE OF ALCEBRAIC INTCGERS - proof of sumth theeorem

- Let $P(X)=X^{g}-a_{1} X^{g-1}+\ldots$ be the polynomial $\prod_{i}\left(X-m-1+x_{i}\right)$.
- Its coefficients are in \mathbb{Z}, its roots are real and positive, and its coefficient a_{1} is equal to $g m+g-\operatorname{Trace}(F)$.
- The defect of P is $k(P)=a_{1}-g=g m-\operatorname{Trace}(F)$ and we assumed it $=0,1,2$.
- We write P as the product of irreducible polynomials Q_{λ}. The sum of the defects of the Q_{λ} is 0,1 or 2 . Thus their roots (and therefore those of P) belong to the set described before

$$
\left\{1,2,3,(3 \pm \sqrt{5}) / 2,2 \pm \sqrt{2}, 2 \pm \sqrt{3}, 4 \cos ^{2}(a \pi / 7) a=1,2,3\right\}
$$

TRACE OF ALCEBRAIC INTECERS - conseduences of suyth theor

For a real t, we denote by $\{t\}=t-[t]$ the fractional part of t. We have $2 q^{1 / 2}=m+\left\{2 q^{1 / 2}\right\}$.

Proposition

The second defect 1 case

$$
\pm(\underbrace{m, m, \ldots, m}_{g-2}, m+\frac{-1 \pm \sqrt{5}}{2})
$$

can only occur if $\left\{2 q^{1 / 2}\right\}>(\sqrt{5}-1) / 2=0.6180$

Proposition

The third, fourth, fifth, sixth and seventh defect 2 cases can only occur if $\left\{2 q^{1 / 2}\right\}$ is greater than
$0.4142 \ldots$
0,7320...
0.6180
$0.6180 \ldots$
$0.8019 \ldots$
respectively.

TRACE OF ALCEBRAIC INTCGERS - proof of sigecl theodem

 Let $\left\{P_{\lambda}\right\}_{\lambda \in \Lambda}$ be a finite family of monic polynomials with all roots real and positive, and coefficients in \mathbb{Z}.Let $\left(c_{\lambda}\right)_{\lambda \in \Lambda}$ be positive real numbers. For $x>0$ such that $P_{\lambda}(x) \neq 0$ for every λ, let $g(x)=x-\sum_{\lambda} c_{\lambda} \log \left|P_{\lambda}(x)\right|$ and let $\min (g)=\min _{x \geq 0} g(x)$

Theorem

Let α be a totally positive algebraic integer of degree d which is not a root of any P_{λ}. Then

$$
\operatorname{Trace}(\alpha) / \operatorname{deg}(\alpha) \geq \min (g)
$$

- Let $d=\operatorname{deg}(\alpha)$ and $\alpha_{1}, \ldots, \alpha_{d}$ its conjugates.

TRACE OF ALCEBRAIC INTCGERS - proof of sigecl theorem

 Let $\left\{P_{\lambda}\right\}_{\lambda \in \Lambda}$ be a finite family of monic polynomials with all roots real and positive, and coefficients in \mathbb{Z}.Let $\left(c_{\lambda}\right)_{\lambda \in \Lambda}$ be positive real numbers. For $x>0$ such that $P_{\lambda}(x) \neq 0$ for every λ, let $g(x)=x-\sum_{\lambda} c_{\lambda} \log \left|P_{\lambda}(x)\right|$ and let $\min (g)=\min _{x \geq 0} g(x)$

Theorem

Let α be a totally positive algebraic integer of degree d which is not a root of any P_{λ}. Then

$$
\operatorname{Trace}(\alpha) / \operatorname{deg}(\alpha) \geq \min (g)
$$

- Let $d=\operatorname{deg}(\alpha)$ and $\alpha_{1}, \ldots, \alpha_{d}$ its conjugates.
- $\alpha_{i}>0$ for all i. Up to sign, the resultant of P_{λ} and the minimal polynomial of α is $P_{\lambda}\left(\alpha_{1}\right) \cdot P_{\lambda}\left(\alpha_{2}\right) \cdots P_{\lambda}\left(\alpha_{d}\right)$, hence lies in $\mathbb{Z} \backslash\{0\}$. Thus

$$
\left|P_{\lambda}\left(\alpha_{1}\right) \cdot P_{\lambda}\left(\alpha_{2}\right) \cdots P_{\lambda}\left(\alpha_{d}\right)\right| \geq 1 \Longrightarrow \sum_{i=1}^{d} \log \left(\left|P_{\lambda}\right|\right) \geq 0
$$

TRACE OF ALCEBRAIC INTCGERS - proof of sigecl theorem

 Let $\left\{P_{\lambda}\right\}_{\lambda \in \Lambda}$ be a finite family of monic polynomials with all roots real and positive, and coefficients in \mathbb{Z}.Let $\left(c_{\lambda}\right)_{\lambda \in \Lambda}$ be positive real numbers. For $x>0$ such that $P_{\lambda}(x) \neq 0$ for every λ, let $g(x)=x-\sum_{\lambda} c_{\lambda} \log \left|P_{\lambda}(x)\right|$ and let $\min (g)=\min _{x \geq 0} g(x)$

Theorem

Let α be a totally positive algebraic integer of degree d which is not a root of any P_{λ}. Then

$$
\operatorname{Trace}(\alpha) / \operatorname{deg}(\alpha) \geq \min (g)
$$

- Let $d=\operatorname{deg}(\alpha)$ and $\alpha_{1}, \ldots, \alpha_{d}$ its conjugates.
- $\alpha_{i}>0$ for all i. Up to sign, the resultant of P_{λ} and the minimal polynomial of α is $P_{\lambda}\left(\alpha_{1}\right) \cdot P_{\lambda}\left(\alpha_{2}\right) \cdots P_{\lambda}\left(\alpha_{d}\right)$, hence lies in $\mathbb{Z} \backslash\{0\}$. Thus

$$
\left|P_{\lambda}\left(\alpha_{1}\right) \cdot P_{\lambda}\left(\alpha_{2}\right) \cdots P_{\lambda}\left(\alpha_{d}\right)\right| \geq 1 \Longrightarrow \sum_{i=1}^{d} \log \left(\left|P_{\lambda}\right|\right) \geq 0
$$

- We get

$$
\frac{\operatorname{Trace}(\alpha)}{\operatorname{deg}(\alpha)}=\frac{1}{d} \sum_{i=1}^{d} \alpha_{i}
$$

TRACE OF ALCEBRAIC INTCGERS - proof of sigecl theorem

 Let $\left\{P_{\lambda}\right\}_{\lambda \in \Lambda}$ be a finite family of monic polynomials with all roots real and positive, and coefficients in \mathbb{Z}.Let $\left(c_{\lambda}\right)_{\lambda \in \Lambda}$ be positive real numbers. For $x>0$ such that $P_{\lambda}(x) \neq 0$ for every λ, let $g(x)=x-\sum_{\lambda} c_{\lambda} \log \left|P_{\lambda}(x)\right|$ and let $\min (g)=\min _{x \geq 0} g(x)$

Theorem

Let α be a totally positive algebraic integer of degree d which is not a root of any P_{λ}. Then

$$
\operatorname{Trace}(\alpha) / \operatorname{deg}(\alpha) \geq \min (g)
$$

- Let $d=\operatorname{deg}(\alpha)$ and $\alpha_{1}, \ldots, \alpha_{d}$ its conjugates.
- $\alpha_{i}>0$ for all i. Up to sign, the resultant of P_{λ} and the minimal polynomial of α is $P_{\lambda}\left(\alpha_{1}\right) \cdot P_{\lambda}\left(\alpha_{2}\right) \cdots P_{\lambda}\left(\alpha_{d}\right)$, hence lies in $\mathbb{Z} \backslash\{0\}$. Thus

$$
\left|P_{\lambda}\left(\alpha_{1}\right) \cdot P_{\lambda}\left(\alpha_{2}\right) \cdots P_{\lambda}\left(\alpha_{d}\right)\right| \geq 1 \Longrightarrow \sum_{i=1}^{d} \log \left(\left|P_{\lambda}\right|\right) \geq 0
$$

- We get

$$
\frac{\operatorname{Trace}(\alpha)}{\operatorname{deg}(\alpha)}=\frac{1}{d} \sum_{i=1}^{d} g\left(\alpha_{i}\right)+\frac{1}{d} \sum_{\lambda \in \Lambda} \sum_{i=1}^{d} c_{\lambda} \log \left(\left|P_{\lambda}\right|\right)
$$

TRACE OF ALCEBRAIC INTCGERS - proof of sigecl theorem

 Let $\left\{P_{\lambda}\right\}_{\lambda \in \Lambda}$ be a finite family of monic polynomials with all roots real and positive, and coefficients in \mathbb{Z}.Let $\left(c_{\lambda}\right)_{\lambda \in \Lambda}$ be positive real numbers. For $x>0$ such that $P_{\lambda}(x) \neq 0$ for every λ, let $g(x)=x-\sum_{\lambda} c_{\lambda} \log \left|P_{\lambda}(x)\right|$ and let $\min (g)=\min _{x \geq 0} g(x)$

Theorem

Let α be a totally positive algebraic integer of degree d which is not a root of any P_{λ}. Then

$$
\operatorname{Trace}(\alpha) / \operatorname{deg}(\alpha) \geq \min (g)
$$

- Let $d=\operatorname{deg}(\alpha)$ and $\alpha_{1}, \ldots, \alpha_{d}$ its conjugates.
- $\alpha_{i}>0$ for all i. Up to sign, the resultant of P_{λ} and the minimal polynomial of α is $P_{\lambda}\left(\alpha_{1}\right) \cdot P_{\lambda}\left(\alpha_{2}\right) \cdots P_{\lambda}\left(\alpha_{d}\right)$, hence lies in $\mathbb{Z} \backslash\{0\}$. Thus

$$
\left|P_{\lambda}\left(\alpha_{1}\right) \cdot P_{\lambda}\left(\alpha_{2}\right) \cdots P_{\lambda}\left(\alpha_{d}\right)\right| \geq 1 \Longrightarrow \sum_{i=1}^{d} \log \left(\left|P_{\lambda}\right|\right) \geq 0
$$

- We get

$$
\frac{\operatorname{Trace}(\alpha)}{\operatorname{deg}(\alpha)} \geq \frac{1}{d} \sum_{i=1}^{d} g\left(\alpha_{i}\right)
$$

TRACE OF ALCEBRAIC INTCGERS - proof of sigecl theorem

 Let $\left\{P_{\lambda}\right\}_{\lambda \in \Lambda}$ be a finite family of monic polynomials with all roots real and positive, and coefficients in \mathbb{Z}.Let $\left(c_{\lambda}\right)_{\lambda \in \Lambda}$ be positive real numbers. For $x>0$ such that $P_{\lambda}(x) \neq 0$ for every λ, let $g(x)=x-\sum_{\lambda} c_{\lambda} \log \left|P_{\lambda}(x)\right|$ and let $\min (g)=\min _{x \geq 0} g(x)$

Theorem

Let α be a totally positive algebraic integer of degree d which is not a root of any P_{λ}. Then

$$
\operatorname{Trace}(\alpha) / \operatorname{deg}(\alpha) \geq \min (g)
$$

- Let $d=\operatorname{deg}(\alpha)$ and $\alpha_{1}, \ldots, \alpha_{d}$ its conjugates.
- $\alpha_{i}>0$ for all i. Up to sign, the resultant of P_{λ} and the minimal polynomial of α is $P_{\lambda}\left(\alpha_{1}\right) \cdot P_{\lambda}\left(\alpha_{2}\right) \cdots P_{\lambda}\left(\alpha_{d}\right)$, hence lies in $\mathbb{Z} \backslash\{0\}$. Thus

$$
\left|P_{\lambda}\left(\alpha_{1}\right) \cdot P_{\lambda}\left(\alpha_{2}\right) \cdots P_{\lambda}\left(\alpha_{d}\right)\right| \geq 1 \Longrightarrow \sum_{i=1}^{d} \log \left(\left|P_{\lambda}\right|\right) \geq 0
$$

- We get

$$
\frac{\operatorname{Trace}(\alpha)}{\operatorname{deg}(\alpha)} \geq \min (g)
$$

TRACE OF ALCEBRAIC INTECERS - sIIGel bound

To obtain Siegel's bound, we need to exclude $x=1$ and $x=(3 \pm \sqrt{5}) / 2$ which are roots of $x^{2}-3 x+1$. We take

$$
g(x)=x-a \log |x|-b \log |x 1|-c \log \left|x^{2}-3 x+1\right|
$$

with $a, b, c>0$.
If we choose $a=0.574, b=0.879$ and $c=0.374$ we find

$$
\min (g)>1.59
$$

Hence

$$
\frac{\operatorname{Trace}(\alpha)}{\operatorname{deg}(\alpha)}>1.59
$$

QUESTIONS?

REFERENCES

- Hartshorne, R. Algebraic Geometry, Springer, 1977
- Freitag, E. and Kiehl, R. Etale cohomology and the Weil conjecture, Springer, 1988
- Kedlaya, K., Course Math 206A - Topics in Algebraic Geometry: Weil cohomology in practice https://kskedlaya.org/papers/weil_cohomology_in_practice.pdf
- Kedlaya, K., Counting Points on Hyperelliptic Curves using Monsky-Washnitzer Cohomology https://arxiv.org/abs/math/0105031
- Venkatesh, S., Étale cohomology of curves https://math.mit.edu/~sidnv/Cohomology_of_Curves.pdf
- Borcheerds, R.E., Weil conjectures playlist on YouTube https://www.youtube.com/watch?v=2n8xpH5enDg

