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CURVES ol

Let X be a genus g curve over a finite field F,.

For any commutative F,-algebra R, the map x — x4 is an F,-homomorphism

from R to itself. For any scheme X over F,, this construction induces
F : X = X called the Frobenius of X.

Let X = X ®g, Fq, then X is a smooth irreducible projective curve and
F: X —X
(X0 ixg) (x5 . x])

has degree q.

X(Fq) = Fix (F, X(Fy))
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WEIL AND HASSE BOUNDS

Weil bound
Let X be a genus g curve over F,. We let N(X) = #X(Fg). Then

IN(X) = (g+1)| <2g9vq

Hasse bound
Let E be an elliptic curve over Fq. Then

IN(E) = (a+1)[ <2V/q
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HASSE BOUNDS - AN EXAMPLE

Consider the elliptic curve E : y? = x3 — x4+ 1. Then

q | Ng(E) | IN(E) = (a+1)[ | 2V
3| 7 3 3.46
5| 8 2 4.47
7| 12 4 5.29
9| 7 3 6

1] 10 2 6.63
13 19 5 7.21
17| 14 4 8.25
19| 22 2 8.72
25| 82 6 10

27| 28 0 10.39
29| 37 7 10.77
31| 35 3 11.14
37| 36 2 12.17
49 | 48 2 14

Lo

3¢
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HASSE BOUNDS - skeTck or proor

» The Frobenius endomorphism of E generates the Galois group Gal(F,/F,).
» Then, for all P € E(F,), we have

P e E(F;) ifandonlyif F(P)=P

v

Thus, E(F4) = ker(1 — F)
In particular, as 1 — F is a separable isogeny, this implies

v

#E(Fq) =#ker(1 — F) =deg(1—F)

v

Cauchy-Schwarz inequality gives
|deg(1 — F) — deg(F) — deg(1)[ < 2+/deg(F)deg(1)
[#E(Fq) —q—11<2yq

Silverman, J.H. The arithmetic of elliptic curves, Springer, 2009 .
4
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WEIL BOUNDS - How T0 60 ABOUT PROVING IT é

There are many different approaches to the Weil bound.
» Cohomology
» Intersection theory on the self-product of the curve (Weil’s second proof)
» Comparison of a curve with its Jacobian (Weil’s original argument)
» Polynomial methods (Bombieri-Stepanov)

Hartshorne, R. Algebraic Geometry, Springer, 1977

Freitag, E. and Kiehl, R. Etale cohomology and the Weil conjecture, Springer, 1988 N
) P
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WEIL BOUNDS - THE IDEA BEHIND THE COHOMOLOGY APPROACH Lcoo

The idea is that counting fixed points of a self-map on a space should have
something to do with computing traces of some associated linear map?.

Example. If o is a permutation of {1, ..., n}, then the number of fixed points of
o is equal to the trace of the permutation matrix associated to o.

Example. [Lefschetz trace formula). Let T : S — S be a continuous map of a
topological space. Under suitable conditions, the quantity

Z(—l)i Trace(T, Hi(S))

gives a weighted count of the fixed points of T; in particular, the nonvanishing of
this quantity can be used to establish the existence of a fixed point of T.

IKedlaya, K. Course Math 206A - Topics in Algebraic Geometry: Weil cohomology in prac*"*@
S
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WEIL BOUNDS - THE WEIL COHOMOLOGICAL METACONJECTURE Lootol

For some field K of characteristic zero, there is a series of contravariant
“cohomological” functors

H' : {algebraic varieties over F,} — {finite dimensional vector spaces over K}
satisfying the following formula: for i =0, .. ., 2d = 2dim(X)
2d

#X(Fg) = > (—1)' Trace(F", H'(X))

i=0
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THE COHOMOLOGY APPROACH - CLASSICAL COHOMOLOGY %A
He(X) = @H’(X)

» H'(X) is a finite dimensional vector space over K and H'(X) = 0 for i > 2d.

Y
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THE COHOMOLOGY APPROACH - cLASSICAL COHOMOLOGY %A
He(X) = @H’(X)

» H'(X) is a finite dimensional vector space over K and H'(X) = 0 for i > 2d.

» Poincaré Duality. There is a bilinear form H'(X) x H?d~" — H?d ~ K
allowing the identification

H2T7(X) mns Hi(X) = Hom(H'(X), K)

Y
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THE COHOMOLOGY APPROACH - cLASSICAL COHOMOLOGY %A
He(X) = @H’(X)

» H'(X) is a finite dimensional vector space over K and H'(X) = 0 for i > 2d.

» Poincaré Duality. There is a bilinear form H'(X) x H?d~" — H?d ~ K
allowing the identification

H2T7(X) mns Hi(X) = Hom(H'(X), K)

» Kinneth formula H*(X) @ H*(Y) ~ H*(X x Y)

Y
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THE COHOMOLOGY APPROACH - cLASSICAL COHOMOLOGY LCOL0 %A
X) = @H"(X

H'(X) is a finite dimensional vector space over K and H'(X) = 0 for i > 2d.

Poincaré Duality. There is a bilinear form H'(X) x H24=" — H?d ~ K
allowing the identification

v

v

H2T7(X) mns Hi(X) = Hom(H'(X), K)

Kinneth formula H*(X) @ H*(Y) ~ H*(X x Y)
Any morphism f : X — X defines a linear map () : H'(X) — H'(X) such
that the £(/) constitute a homomorphism of algebras £* : H*(X) — H*(X).

v

v

Fix(f, X) = Z( 1)" Trace(f")

Y
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THE COHOMOLOGY APPROACH - cLASSICAL COHOMOLOGY LCULD
X) = @H"(X

» H'(X) is a finite dimensional vector space over K and H'(X) = 0 for i > 2d.
» Poincaré Duality. There is a bilinear form H'(X) x H?d~" — H?d ~ K
allowing the identification

H2T7(X) mns Hi(X) = Hom(H'(X), K)

» Kinneth formula H*(X) @ H*(Y) ~ H*(X x Y)
» Any morphism f : X — X defines a linear map () : H'(X) — H'(X) such
that the £(/) constitute a homomorphism of algebras £* : H*(X) — H*(X).

Fix(f, X) = Z( 1)" Trace(f")

» If Y is a nonsingular subvariety of X of dimension d — 1 then there is a
natural mapping H'(X) — H'(Y) which is bijective for i < d — 2 and

injective fori =d — 1
oY
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THE COHOMOLOGY APPROACH - cLASSICAL COHOMOLOGY LCOL0 %A

X)=EPH'(x

» Let h e H?(X) and L : a — ah be the multiplication-by h map in H*(X); then
L= HI(X) — H297/(X) is an isomorphism for i < d.
This implies that if we have a morphism f : X — X such that f(?)(h) = gh
where g > 0 is a rational number, then g; = ¢g—/2f() is an automorphism of
HI(X) @k K and if a; j are the eigenvalues of () in K, then

{ql/ [aijtij = {ood- lj/q (i72) }

Y
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THE COHOMOLOGY APPROACH - cLASSICAL COHOMOLOGY LCULD

X)=EPH'(x

» Let h e H?(X) and L : a — ah be the multiplication-by h map in H*(X); then
L= HI(X) — H297/(X) is an isomorphism for i < d.
This implies that if we have a morphism f : X — X such that f(?)(h) = gh
where g > 0 is a rational number, then g; = ¢g—/2f() is an automorphism of
H'(X) @k K and if a; ; are the eigenvalues of () in K, then
{q'? /aijtij = {aad- lj/q (i72)}

» Ineach H'(X) for i < d there is a subspace A’(X) stable under () and on
each A’(X), as v.s., there is a scalar product such that, if f verifies
f(h) = gh, each g; is a unitary mapping for that scalar product and all the
a;; have absolute value q'/2.

Y

THE WEIL BOUND | Groupe de Travail - 13 October 2022




I
2
M

THE COHOMOLOGY APPROACH - A THEOREM OF SERRE

Theorem

There does not exist a cohomology theory for schemes over F, with the
following properties:

» Functorial
» Kulnneth formula
> HY(E) = Q?

There’s no cohomology theory with Q-coefficients for schemes over F,,.
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THE COHOMOLOGY APPROACH - AN EXAMPLE OF SERRE %A

Let E be an elliptic curve.

Classical cohomology

For every coherent sheaf F on a proper scheme X

X(X) =Y _(~1)'H(X,F)

i

» Since x(E) =2 —2g = 0 we have H(E) = Q.
» There is a natural action of End(E) on H(E) on the right.

» This action is compatible with products and sums (thanks to functoriality
and Kinneth formula).

» Thus, we have a representation of End(E) on H'(X) and also of
End’(E) = End(F) ® Q.

» But, if £ is supersingular, then End®(E) is of rank 4 and we cannot have a
dimension 2 representation over Q.

» This also excludes K = Q, and R as End®(E) ® Q, is still non-split.
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THE COHOMOLOGY APPROACH - A GooD COHOMOLOGY THEORY %A

There are essentially two known approaches to construct a Weil cohomology
theory

» K = Qy, £ # p; Etale cohomology developed by Grothendieck.
» K = Q,; Rigid cohomology.
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THE COHOMOLOGY APPROACH - ETALE MORPHISMS %A

Definition
We say that a morphism of schemes f : X — Y is étale if it is
> Flat, i.e., £ : Oy 1) = Oxx is flat for every x.

» Unramified, i.e., m(,)Ox,x = m, and the extension K(y) — K(x) is
separable.

For example, if L/K is a finite extension, then Spec(L) — Spec(K) is étale.

Also, if L/K is of number fields, Spec(O,) — Spec(Ok) is flat and for all ¢ € O,
above p C Ok we have k(q)/k(p) separable.
Hence, Spec(O,) — Spec(Ok) is unramified (and hence étale) at ¢ C O if and

only if g(Oy )4 is generated by p = q N Ok, which is the usual definition of
unramifiedness.

D
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THE COHOMOLOGY APPROACH - PROPERTIES OF ETALE MORPHISMS LEULD

» Open immersions are étale.
» Compositions of étale morphisms are étale.
» Base change of étale is étale
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THE COHOMOLOGY APPROACH - £7aLE TopoLOGY %A

One does not need to have a topological space to build up a sheaf theory (and a
cohomology theory for sheaves). Indeed, let C be a category with, for each
object U of C a distinguished set of families of maps {U; — U} ¢, called the
covering of U, that satisfy:

» For a covering {U; — U}ie; of U and any morphism V — U in C, the fiber
products {U; x;; V — V}ie exist and form a covering of V

> If {Uj — U}ies is a covering of U, and for each i € 1, {V;; = U;}jecsis a
covering of U;, then {V; ; — U}, is a covering of U

» Foralld in C, the family {i/ — U} is a covering of U.
Such a system of coverings is called a Grothendieck topology on C and C
together with this topology is called a site.

Definition

We define the étale site of X (denoted Xe;) as a category Etx with objects

the étale morphisms &/ — X and arrows the X-morphisms (the obvious
commutative diagrams) ¢ : U — V.
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THE COHOMOLOGY APPROACH - ETALE SHEAFS EXAMPLES %A

A presheaf for the étale topology on X is a contravariant functor F : Etx — Ab It
is a sheaf if

Fu) =[x = [ 7 <utty)

i€l iJ
is exact for all étale coverings {U; — U} e

Constant sheaf. This takes any étale open set (Y — X) to a fixed abelian
group A.

Sheaf of regular functions. This takes any étale open set (1 — X) of X to the
space O(U) of regular functions of U

Sheaf of invertible functions. It is denoted G,,, and it takes any étale open set
(U — X) of X to O*(U), the units of the regular functions of U.

Sheaf of n-th roots of unity. , takes any étale open set (U — X) of X to the
n-th roots of unity in O(U).
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THE COHOMOLOGY APPROACH - ETALE coHomoLoey %A

The functor

Sh(Xet) — Ab
F— (X, F)

is left exact and we can define H"(Xet, —) as its r-th right derived functor. One
then has the usual properties

» For any sheaf F, HS(X, F) = H*(Xet, F) = (X, F).
> HL(X,Z)=0forr>0if Zis injective
» Functoriality; a short exact sequence of sheaves

0—F —F—F"—0
gives rise to a long exact sequence in cohomology

0 — HY(X, F) — HY(X, F) — HYL(X, F") — HL(X, F') — ...

D
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THE COHOMOLOGY APPROACH - ETALE COHOMOLOGY FOR CURVES Lol %A

Etale cohomology of a curve

Let X be a nonsingular projective curve over K. For n invertible in K

Z/nZ if r=0
HL(X,Z/nZ) = (Z/nZ)* ifr=1
Z/nZ if r=2

Let X be a non-singular projective curve. We want to calculate HZ,(X,Z/£"Z)
We define
HL(X,Zg) = lim H.(X,Z/£"Z))
—

Hgt(X: QZ) = Hgt(X, ZZ) ® Qg
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THE COHOMOLOGY APPROACH - LEFSCHETZ TRACE FORMULA %A

Theorem
We have the Lefschetz formula

2d

#X(Fg) = (~1)" Trace (F, H"(Xer, Q)

i=0

Theorem
Weil proved that the eigenvalues ; of F on H'(X., Q) are algebraic integers
with |7r,-| = q1/2.

Thus

29
[#X(Fq) = (a+1)| = |Trace (F, H'(Xer, Q)| < Y _Imi| < 29V/4

i=1
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THE COHOMOLOGY APPROACH - DE RAHM COHOMOLOGY %A

Let K be a field, and A a finitely generated K-algebra.
Definition
We define the module of Kahler differentials as

free module on formal symbols dr (r € A)
(reK),d(r+s)—dr—ds,d(rs)—r ds—s dr)

Qark = (dr

We set QQ\/K =N\ Qa/k; there is a derivation map

d: Qe — Ui

fodfi Ao Ndfi — dfo ANdfL AN dE

We get the de Rahm complex €25, /K and we define the de Rham cohomology of
A as

Hyr(A/K) = H' (k)
If X = Spec(A), then H)x(X/K) = H'x(A/K).
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THE COHOMOLOGY APPROACH - MONSKY-WASHNITZER COHOMOLOG Lol %A

Let char(k) = p. We set R to be the Witt vectors of k. We have R/pR = k. We
set K = Frac(R).

Elkik-Arabia Theorem

There is a unique (up to isomorphism) R algebra A complete w.r.t. the p-adic
topology, flat over R, such that

ARQrk=A

For A = k[x] this is

A=R(x)= {Jff anx"

n=0

|an‘P - O}

If we try to mimic the de Rahm construction we get infinite dimensional
objects

)
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THE COHOMOLOGY APPROACH - MONSKY-WASHNITZER COHOMOLOG Lol %A

Let char(k) = p. We set R to be the Witt vectors of k. We have R/pR = k. We
set K = Frac(R).

Monsky-Washnitzer

We can consider a subring
“+oo
At = {Z anx"
n=0

Elements of A are functions on the closed unit disc. A’ consists of functions on
the closed unit disc which in fact converge on some bigger disc.

Monsky-Washnitzer cohomology

We define

lim |a,|0” =0 some p > 1}
n—oo

Hiaw (A/K) = H' (s /i)

)
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THE COHOMOLOGY APPROACH - Mw COHOMOLOGY FOR CURVES %A

» Suppose X is an hyperelliptic curve y? = P(x) of genus g = (deg(P) — 1)/2

K[x.y.z Klx,y.y

Its coordinate ring is A = (yZ—P[(X),y]z—l) = =P)
Construct A>, the p-adic completion of A.
Consider the weak completion of A:

A = { > B

n=—0o0

v

v

v

B, € K[x], degB, < 29}

with the further condition that v,(B,(x)) grows faster than some linear
function of |n| as |n| — *oo.

v

The only non-trivial MW cohomology groups are H° and H*.

v

The first conomology group splits into two eigenspaces under the
hyperelliptic involution

Hiy (X/K)T with basis {xidx/y2}0<i<zg

Hinw (X/K)™ with basis {x'dx/2y} o5,
)
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THE COHOMOLOGY APPROACH - MW LEFSCHETZ FORMULA %A

Lefschetz formula

#X(Fg) = q" — Trace(qF !, Hypw (X/K))

» K is an unramified extension of Q,. Thus, we have a unique automorphism
Fi lifting the Frobenius of F,. Let F denote a p-power Frobenius lift on Af:

F(y) = (Fx(P)(xP))"?

e
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THE COHOMOLOGY APPROACH - MW LEFSCHETZ FORMULA %A

Lefschetz formula

#X(Fg) = q" — Trace(qF !, Hypw (X/K))

» K is an unramified extension of Q,. Thus, we have a unique automorphism
Fi lifting the Frobenius of F,. Let F denote a p-power Frobenius lift on Af:

F(x)=xP

Fv) = (Fk(F)(x") = P(x)" + P(x)")"/?

e
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THE COHOMOLOGY APPROACH - MW LEFSCHETZ FORMULA %A

Lefschetz formula

#X(Fy) = q" — Trace(qF !, Hypw (X/K))

» K is an unramified extension of Q,. Thus, we have a unique automorphism
Fi lifting the Frobenius of F,. Let F denote a p-power Frobenius lift on Af:

F(x) = xP

Fr(P)(xP) — P(x)p)”

Fly) = PLopr (14 SEE

)
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THE COHOMOLOGY APPROACH - MW LEFSCHETZ FORMULA %A

Lefschetz formula

#X(Fy) = q" — Trace(qF !, Hypw (X/K))

» K is an unramified extension of Q,. Thus, we have a unique automorphism
Fi lifting the Frobenius of F,. Let F denote a p-power Frobenius lift on Af:

F(x) = xP

Fr(P)(xP) — P(x)p)”

F(y):yp<1+ P(x)?

)
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THE COHOMOLOGY APPROACH - MW LEFSCHETZ FORMULA LEULD

Lefschetz formula

#X(Fy) = q" — Trace(qF !, Hymw (X/K))

» K is an unramified extension of Q,. Thus, we have a unique automorphism
Fi lifting the Frobenius of F,. Let F denote a p-power Frobenius lift on Af:

F(x) =xP

FU) = pz(1/2> (Fi(P)(*) — P(x)?)

y2/p

)
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THE COHOMOLOGY APPROACH - MW LEFSCHETZ FORMULA LEULD

Lefschetz formula

#X(Fq)) = ¢ — Trace(aF ™, Hiy (X/K))

» K is an unramified extension of Q,. Thus, we have a unique automorphism
Fi lifting the Frobenius of F,. Let F denote a p-power Frobenius lift on Af:

F(x) = xP
Fly) = ”Z<1/2> FK(P)(Xypz),p P(x)?)
» Now we apply it to Hiw (X'):
. xPd(xP)
T R)

)

THE WEIL BOUND | Groupe de Travail - 13 October 2022




THE COHOMOLOGY APPROACH - MW LEFSCHETZ FORMULA %A

Lefschetz formula

#X(Fgr) = q" — Trace(qF ", Hyw (X/K))

» K is an unramified extension of Q,. Thus, we have a unique automorphism
Fi lifting the Frobenius of F,. Let F denote a p-power Frobenius lift on A:

F(x)=xP
Fly) = ypZ: <1{2> (FK(P)(X;)"J— P(x)")
» Now we apply it to Hiy (X'):
iptp— dx
P =P e )

()
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THE COHOMOLOGY APPROACH - MW LEFSCHETZ FORMULA %A

Lefschetz formula
#X(Fg) = q" — Trace(qF !, Hymw (X/K))

» K is an unramified extension of Q,. Thus, we have a unique automorphism
Fi lifting the Frobenius of F,. Let F denote a p-power Frobenius lift on A:

F(x)=xP

Fly) = ypZ: <1{2> (FK(P)(X;)”J— P(x)")
» Now we apply it to Hiy (X'):
AN

F*w; = pxPtP~1 -
’ Fy)2y

()
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THE COHOMOLOGY APPROACH - MW LEFSCHETZ FORMULA %A

Lefschetz formula

#X(Fgr) = q" — Trace(qF ", Hyw (X/K))

» K is an unramified extension of Q,. Thus, we have a unique automorphism
Fi lifting the Frobenius of F,. Let F denote a p-power Frobenius lift on A:

F(x)=xP

riy) =3 (H2) P Pl

y2ip
» Now we apply it to Hiy (X'):

R ( 5 (—1_/2) (Fr(P)(x?) - P(x)f’)") dx

2pk
pare I yeP 2y

<

)
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INTERSECTION THEORY - sunraces %A

By surface, we refer to a smooth projective variety of dimension 2 over an
algebraically closed field k. By a curve on a surface, we mean an effective
divisor on the surface. We say that two curves C and D meet transversely
if, for every common point P, their local defining equations f and g generate
the maximal ideal of the local ring Op x.

We would like to define a bilinear form
Div(X) x Div(X) — Z (C,D)— C.D

that expresses the intersection number of two curves on a surface.
» If C and D meet transversely at d points, then C.D = d
» C.D=D.Cand (G + &).D=C.D+ G.D
» The intersection number depends only on linear equivalence classes

C.D= Z len (Op x/(f. 9))

PeCnD
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INTERSECTION THEORY - RIEMANN-ROCH FOR SURFACES

Lemma (Adjunction formula)

Let C be nonsingular curve on X of genus g. Then the following holds:

C(C+K

Riemann-Roch
Let X be a surface and D a divisor on X. Let Kx be the canonical class,
{(D) = dimkH(X, Ox) and s(D) = dimxH(X, Ox) and the arithmetic
genus of X, p, = x(Ox) — 1. Then,

(D) = 5(D) +&(Kx — D) = 5 (D.(D — Kx)) + x(Ox)

N =

< 24 *
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INTERSECTION THEORY - HODGE INDEX THEOREM LCOLO

=ro—

Let H be a very ample divisor on a surface X. Then for a curve C on X, the
degree of C under the embedding given by H into P” coincides with C.H.

Lemma

Let H be an ample divisor on X, and let D be a divisor such that D.H > 0
and D? > 0. Then for all n > 0, nD is linearly equivalent to an effective
divisor.

Hodge Index Theorem

Let H be an ample divisor on the surface X and let D be a non zero divisor
with D.H = 0. Then D? < 0.

Nakai-Moishezon criterion

A divisor D on a surface X is ample if and only if D?> > 0 and D.C > 0 for all
irreducible curves C in X.

< 25 *
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INTERSECTION THEORY - wiL BouND %A

The idea is to use the intersection theory on the surface X xg X.
» For every morphism of curves f : X — Y, we have a prime correspondence

[ (/dx X f)(X) CXxXY

called the graph of f.

» We let A be the graph of the identity morphism Idx : X — X, also called the
diagonal correspondence

» We let I' = ' be the graph of Frobenius given by the image of the closed
immersion
X = XxX x(x, F(x))

Notice that this is a prime correspondence, and therefore a curve of genus
9= g(X).
» Since I and A intersect transversely at all points where they intersect

N(X) = #Fix(F, X) =T.A

< 26 *
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INTERSECTION THEORY - PROVING THE WEIL BOUND

Lo

» We have A? = 2 — 2g as A? is the degree of the normal bundle to the
diagonal embedding X — X x X; this is the tangent bundle to X, which has
degree 2 — 2g.

» To compute 2 we note that I

29 —2 =T +T.Kg,x

We can express Kx, x as the sum of the pullbacks m; * Ky + m5 K. Now I
intersects X x {*} and {*} x X with multiplicity 1 and g. Since

deg Ky =29 — 2, thisgives > =2g — 2 — (g + 1)(29 — 2) = q(2 — 29).
Let D be any divisor on X x X with a = D.(X x {*}) and b = D.({x} x X).
Then

|D.A — (a+ b)| < v/29(2ab — D?)

» The Weil bound follows by taking D =T for which a=1and b = gq.
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WEIL BOUND - A FIRST REFINEMENT

Theorem

We have
IN—(g+1)<g [2611/2}

We have seen )
g
#X(Fg)=1+q"—> 7]

i=1

Proposition
One can order the 7; in such away that g1, . . ., Tog are equal to
respectively.

» It suffices to show that if g = g2 then go and —qo both occur with even
multiplicity.
» all the other cases follow by the stability under Ga£(Q/Q)).

()
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PROOF OF THE REFINED WEIL BOUND %A

g
> N(X)—(g+1) = Z'/r,— ZX,’WheI’eX,':’/r,‘-i-ﬁ,'

i=1

» Let m= [2¢'/2], then \x,-| < m+ 1 for every i.

» lety,=m-+1+x;,theny;, > 0.

» The y;’s are stable under Galois conjugation and thus they are algebraic
integers. Hence their product is a natural number.

» The arithmetic-geometric mean inequality gives

y1+g+yg>( )1/g>1

Thus
yl"‘---"‘)/g

1 g
=m+14+ - xji > 1
g 5%

i=1
» This gives the inequality Trace(F) > —gm. For the other inequality, one
applies the same proof to the opposite of the Frobenius.

29
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REFINED WEIL BOUND - AN ExAMPLE LEULG

sage: p = 101

c...: prec = 10

: R.o<x> = QQ['x']

.o..t A, forms=monsky_washnitzer.matrix_of_frobenius_hyperelliptic(x”~5 + 2%x~2 + x+1,p,prec);

sage: EQ=HyperellipticCurve(x"5+2%x~2+x+1)

....: K=Qp(p,prec)

E=EQ. change_ring(K)

M=A.change_ring(ZZ);

[56493213215724647323 91221651972720789035 109467512373478956972 31096679099710501963]

[ 30588000606515507587 85600942703587230697 68841142676393372694 13975965182916593107]

[ 69060715659998179697 103331531349894232384 27136296461538705801 78187521694516401570]

[ 12771691150105329442 47970135072000782451 95042490856601645827 51693972701390318174]

sage: P A.charpoly();P;

sage:

(1 + 0(101"10))*%4 + (7 + 0(101710) )*x"3 + (66 + 101 + 0(101°10))*x*2 + (7x101 + 0(101~10))*x + 1012 + 0(101~10)
sage: R=P.roots();

sage: R

[(20 + 93%x101 + 67%101"2 + 57x101"3 + 101”4 + 63%101"5 + 10%101°6 + 13%101~7 + 45%101~8 + 99%101~9 + 0(101~10),

,
(74 + 27%101 + 18%101°2 + 64%101"3 + 5%101°5 + 64%101"6 + 65%x101°7 + 3%101°8 + 57x101%9 + 0(101°10),

1),

(96%101 + 93x101~2 + 89%101"3 + 43x101%4 + 65%101°5 + 30%101°6 + 281017 + 83%101°8 + 24%101%9 + 0(101~10),

1),
(86%101 + 21%101"°2 + 91x1017°3 + 54%101%4 + 68%101"5 + 96x10176 + 94x101~7 + 69%101"8 + 20%101°9 + 0(101~10),
1)]
sage: —(R[0][e]+R[1][0]+R[2][0]+R[3][0])
7 + 0(101"10)
sage: R[0][0]*R[2] [0]
101 + 47x101"9 + 0(101"10)
sage: R[1][0]*R[3][0]
101 + 18x101"9 + 0(101~10)
sage: K = GF(101)
...t PR.<t> = PolynomialRing(K)
: EH = HyperellipticCurve(t™5 + 2xt~2 + t + 1)
: EH.cardinality()

sage: I
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MORE ON THE REFINED WEIL BOUND

Theorem
If Trace(F) = +gm, then the x;’s are equal to £m.

Corollary

If N = 1+ g+ 2m, then the eigenvalues of the Frobenius are equal to
(—=m=£+/m?—4q)/2 (g times each).

31
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TRACE OF ALGEBRAIC INTEGERS - A THEOREM OF SMYTH LC[]L[]

Let A be a g-dimensional abelian variety over F,.
> |f Trace(F) = £gm (defect O case) then (xq, .. ., Xg) = £(m, ..., m).
> If Trace(F) = +(gm — 1) (defect 1 case) there are two possibilities for

(T Xg). Namely,
-1+
£(m,m,...,mym—1) and =+ m,m,...,m,m—kJ
1 2 2
9- 9-

> If Trace(F) = £(gm — 2) (defect 2) there are 7 possibilities for

(IR Xg)-
+(mm,..., m, m—2) (g>1)
+(m,..., mm—1,m-—1) (9>2)
£(m,....mm+v2-1,m-v2-1) (9>2)
+(m,..., mm++v3-1,m—-+v3-1) (g>2)
+(m,..., m m—1m+ (-1+V5)/2) (g >3)
+(m,..., m,m+ (—1£+v5)/2,m+ (-1 £ 5)/2) (g>4)
+(m,..., m,m+1—4cos?(ar/7)), a=1,23 (923)0




TRACE OF ALGEBRAIC INTEGERS - A THEOREM OF SIECEL é

Theorem

Let o be a totally positive algebraic integer of degree deg(a). If e is neither
1 nor (3 ++/5)/2 then

Teace(a)l gdeg(a)

> If a = 1, then Trace(a)/deg(a) = 1.
» If a = (34 +/5)/2, then Trace(a)/deg(a) = 3/2.
» If a # 1, (3 + 1/5)/2 then Smyth proved Trace(a)/deg(a) > 5/3.

Let k(o) = Trace(a) — deg(a). Then:
> If k(o) =0, then a = 1.
» Ifk(a)=1,thena=2o0ra = (3+£5)/2.

» If k(o) =2, thena =3 0ora =2+ +/2or2++/3 0r ais one of the
conjugates of 4 cos?(/7)
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TRACE OF ALGEBRAIC INTEGERS - pRoor oF THE COROLLARY Aéﬂ

Suppose a is not in the list. Then by Siegel’s theorem k(a)/deg(a) > 1/2, i.e.,
deg(a) < 2k(a)

34
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TRACE OF ALGEBRAIC INTEGERS - pRoor oF THE COROLLARY héﬁ

Suppose a is not in the list. Then by Siegel’s theorem k(a)/deg(a) > 1/2, i.e.,
deg(a) < 2k(a)
> If k(o) < 2, thendeg(a) =1and a =1, 2.
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TRACE OF ALGEBRAIC INTEGERS - pRoor oF THE COROLLARY héﬁ

Suppose a is not in the list. Then by Siegel’s theorem k(a)/deg(a) > 1/2, i.e.,
deg(a) < 2k(a)

> If k(o) < 2, thendeg(a) =1and a =1, 2.

> If k(o) = 2, then deg(a) < 4

34
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TRACE OF ALGEBRAIC INTEGERS - pRoor oF THE COROLLARY héﬁ

Suppose a is not in the list. Then by Siegel’s theorem k(a)/deg(a) > 1/2, i.e.,
deg(a) < 2k(a)
> If k(o) < 2, thendeg(a) =1and a =1, 2.
> If k(o) = 2, then deg(a) < 4
e deg(a) =1givesa =3
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TRACE OF ALGEBRAIC INTEGERS - pRoor oF THE COROLLARY héﬁ

Suppose a is not in the list. Then by Siegel’s theorem k(a)/deg(a) > 1/2, i.e.,
deg(a) < 2k(ax)
> If k(o) < 2, thendeg(a) =1and a =1, 2.
> If k(o) = 2, then deg(a) < 4
e deg(a) =1givesa =3
o deg(a) = 2 gives Trace(a) = 4 and « is root of x*> — 4x + n with all conjugates
(roots) positive. Thenn=1,2,3anda =3, a =2++v20r2++3
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TRACE OF ALGEBRAIC INTEGERS - pRoor oF THE COROLLARY héﬁ

Suppose a is not in the list. Then by Siegel’s theorem k(a)/deg(a) > 1/2, i.e.,
deg(a) < 2k(a)
> If k(o) < 2, thendeg(a) =1and a =1, 2.
> If k() = 2, then deg(a) < 4
e deg(a) =1givesa =3
o deg(a) = 2 gives Trace(a) = 4 and « is root of x*> — 4x + n with all conjugates
(roots) positive. Thenn=1,2,3anda =3, a =2++v20r2++3
e deg(a) = 3 gives the roots of a cubic polynomial P(x) = x* — 5x2 + px + q
with positive roots.
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TRACE OF ALGEBRAIC INTEGERS - pRoor oF THE COROLLARY héﬁ

Suppose a is not in the list. Then by Siegel’s theorem k(a)/deg(a) > 1/2, i.e.,
deg(a) < 2k(a)
> If k(o) < 2, thendeg(a) =1and a =1, 2.
> If k() = 2, then deg(a) < 4
e deg(a) =1givesa =3
o deg(a) = 2 gives Trace(a) = 4 and « is root of x*> — 4x + n with all conjugates
(roots) positive. Thenn=1,2,3anda =3, a =2++v20r2++3
e deg(a) = 3 gives the roots of a cubic polynomial P(x) = x* — 5x2 + px + q
with positive roots.
1 < p < 8 since the derivative must have 2 positive roots;
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TRACE OF ALGEBRAIC INTEGERS - pRoor oF THE COROLLARY héﬁ

Suppose a is not in the list. Then by Siegel’s theorem k(a)/deg(a) > 1/2, i.e.,
deg(a) < 2k(a)
> If k(o) < 2, thendeg(a) =1and a =1, 2.
> If k() = 2, then deg(a) < 4
e deg(a) =1givesa =3
o deg(a) = 2 gives Trace(a) = 4 and « is root of x*> — 4x + n with all conjugates
(roots) positive. Thenn=1,2,3anda =3, a =2++v20r2++3
e deg(a) = 3 gives the roots of a cubic polynomial P(x) = x* — 5x2 + px + q
with positive roots.
1 < p < 8 since the derivative must have 2 positive roots;
1 < g < 4 by the arithmetic-geometric mean inequality;
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TRACE OF ALGEBRAIC INTEGERS - pRoor oF THE COROLLARY héﬁ

Suppose a is not in the list. Then by Siegel’s theorem k(a)/deg(a) > 1/2, i.e.,
deg(a) < 2k(a)
> If k(o) < 2, thendeg(a) =1and a =1, 2.
> If k() = 2, then deg(a) < 4
e deg(a) =1givesa =3
o deg(a) = 2 gives Trace(a) = 4 and « is root of x*> — 4x + n with all conjugates
(roots) positive. Thenn=1,2,3anda =3, a =2++v20r2++3
e deg(a) = 3 gives the roots of a cubic polynomial P(x) = x* — 5x2 + px + q
with positive roots.
1 < p < 8 since the derivative must have 2 positive roots;
1 < g < 4 by the arithmetic-geometric mean inequality;
p > 3g%/® > 3 by the arithmetic-geometric mean inequality;
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TRACE OF ALGEBRAIC INTEGERS - pRoor oF THE COROLLARY héﬁ

Suppose a is not in the list. Then by Siegel’s theorem k(a)/deg(a) > 1/2, i.e.,
deg(a) < 2k(a)
> If k(o) < 2, thendeg(a) =1and a =1, 2.
> If k() = 2, then deg(a) < 4
e deg(a) =1givesa =3
o deg(a) = 2 gives Trace(a) = 4 and « is root of x*> — 4x + n with all conjugates
(roots) positive. Thenn=1,2,3anda =3, a =2++v20r2++3
e deg(a) = 3 gives the roots of a cubic polynomial P(x) = x* — 5x2 + px + q
with positive roots.
1 < p < 8 since the derivative must have 2 positive roots;
1 < g < 4 by the arithmetic-geometric mean inequality;
p > 3g%/® > 3 by the arithmetic-geometric mean inequality;
Since we need real roots (positive discriminant) we remain with 4 possibilities
(p.q) €{(6,2).(5,1).(7,2).(6,1)}

reducible polynomials
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TRACE OF ALGEBRAIC INTEGERS - pROGF OF SHYTH THEOREN Aéﬁ

» Let P(X) = X9 —a; X971 + ... be the polynomial [T,(X — m — 1 + x;).
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TRACE OF ALGEBRAIC INTEGERS - pROGF OF SHYTH THEOREN héﬁ

» Let P(X) = X9 —a; X971 + ... be the polynomial [T,(X — m — 1 + x;).

» |ts coefficients are in Z, its roots are real and positive, and its coefficient a; is
equal to gm + g — Trace(F).
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TRACE OF ALGEBRAIC INTEGERS - pROGF OF SHYTH THEOREN héﬁ

» Let P(X) = X9 —a; X971 + ... be the polynomial [T,(X — m — 1 + x;).

» |ts coefficients are in Z, its roots are real and positive, and its coefficient a; is
equal to gm + g — Trace(F).

» The defect of P is k(P) = a1 — g = gm — Trace(F) and we assumed it
=0,1,2
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TRACE OF ALGEBRAIC INTEGERS - pROGF OF SHYTH THEOREN héﬁ

» Let P(X) = X9 —a; X971 + ... be the polynomial [T,(X — m — 1 + x;).

» |ts coefficients are in Z, its roots are real and positive, and its coefficient a; is
equal to gm + g — Trace(F).

» The defect of P is k(P) = a1 — g = gm — Trace(F) and we assumed it
=0,12

» We write P as the product of irreducible polynomials Q,. The sum of the
defects of the @, is 0,1 or 2. Thus their roots (and therefore those of P)
belong to the set described before

{1,2,3,(3+V5)/2,2+ V2,2 + /3,4 cos’(anr/7) a=1,2,3}
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TRACE OF ALGEBRAIC INTEGERS - CONSEQUENCES OF SHVTH mmn é

For a real t, we denote by {t} = t — [t] the fractional part of t. We have
2¢Y% = m + {2q¢%/?}.

The second defect 1 case

can only occur if {2¢'/?} > (v/5 — 1)/2 = 0.6180

The third, fourth, fifth, sixth and seventh defect 2 cases can only occur if
{2¢*/?} is greater than

0.4142... 0,7320... 0.6180... 0.6180... 0.8019...

respectively.
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TRACE OF ALGEBRAIC INTEGERS - pRoOF OF SIEGEL THEOREM héﬁ

Let {Px}xren be a finite family of monic polynomials with all roots real and
positive, and coefficients in Z.

Let (ca)aen be positive real numbers. For x > 0 such that Py(x) # 0 for every A,
let g(x) = x — >, axlog|Px(x)| and let min(g) = miny>0 g(x)
Theorem

Let o be a totally positive algebraic integer of degree d which is not a root of
any Py. Then

Trace(cr)/deg(a) > min(g)

> Letd =deg(a) and oy, . . ., ay its conjugates.
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TRACE OF ALGEBRAIC INTEGERS - pRoOF OF SIEGEL THEOREM héﬁ

Let {Px}xren be a finite family of monic polynomials with all roots real and
positive, and coefficients in Z.

Let (ca)aen be positive real numbers. For x > 0 such that Py(x) # 0 for every A,
let g(x) = x — >, axlog|Px(x)| and let min(g) = miny>0 g(x)
Theorem

Let o be a totally positive algebraic integer of degree d which is not a root of
any Py. Then

Trace(cr)/deg(a) > min(g)

> Letd =deg(a) and oy, . . ., ay its conjugates.
» a; > 0 forall i. Up to sign, the resultant of P, and the minimal polynomial of
ais Py(a1) - Pa(oz) -+ Px(aq), hence liesin Z \ {0}. Thus
d
[Pa(a1) - Pa(az) -+ Pa(ag)l 21 = Y log(|Ps]) >0

i=1
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TRACE OF ALGEBRAIC INTEGERS - pRoOF OF SIEGEL THEOREM héﬁ

Let {Px}xren be a finite family of monic polynomials with all roots real and
positive, and coefficients in Z.
Let (ca)aen be positive real numbers. For x > 0 such that Py(x) # 0 for every A,
let g(x) = x — >, axlog|Px(x)| and let min(g) = miny>0 g(x)
Theorem
Let a be a totally positive algebraic integer of degree d which is not a root of
any Py. Then

Trace(cr)/deg(a) > min(g)

» Letd =deg(a) and oy, . . ., ay its conjugates.
» a; > 0 forall i. Up to sign, the resultant of P, and the minimal polynomial of
ais Py(a1) - Pa(an) -+ Px(aq), hence liesin Z \ {0}. Thus
d
[Px(1) - Pa(az) -+ Pa(ag)l =1 = Y log(|Pa]) >0

i=1

» We get
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TRACE OF ALGEBRAIC INTEGERS - PROOF OF SIE