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CURVES

Let X be a genus g curve over a finite field Fq .

Frobenius
For any commutativeFq-algebraR, themap x 7→ xq is anFq-homomorphism
from R to itself. For any scheme X over Fq , this construction induces
F : X → X called the Frobenius of X .
Let X = X ⊗Fq Fq , then X is a smooth irreducible projective curve and

F : X −→ X

(x0 : . . . : xd) 7−→ (xq
0 : . . . : xq

d )

has degree q.

X (Fq) = Fix
(
F ,X (Fq)

)
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WEIL AND HASSE BOUNDS

Weil bound
Let X be a genus g curve over Fq . We let N(X ) = #X (Fq). Then

|N(X )− (q + 1)| ≤ 2g
√

q

Hasse bound
Let E be an elliptic curve over Fq . Then

|N(E )− (q + 1)| ≤ 2
√

q
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HASSE BOUNDS - AN EXAMPLE
Consider the elliptic curve E : y2 = x3 − x + 1. Then

q Nq(E ) |N(E )− (q + 1)| 2
√

q

3 7 3 3.46
5 8 2 4.47
7 12 4 5.29
9 7 3 6
11 10 2 6.63
13 19 5 7.21
17 14 4 8.25
19 22 2 8.72
25 32 6 10
27 28 0 10.39
29 37 7 10.77
31 35 3 11.14
37 36 2 12.17
49 48 2 14
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HASSE BOUNDS - SKETCH OF PROOF

I The Frobenius endomorphism of E generates the Galois group Ga`(Fq/Fq).
I Then, for all P ∈ E (Fq), we have

P ∈ E (Fq) if and only if F (P) = P

I Thus, E (Fq) = ker(1− F )

I In particular, as 1− F is a separable isogeny, this implies

#E (Fq) = # ker(1− F ) = deg(1− F )

I Cauchy-Schwarz inequality gives

|deg(1− F )− deg(F )− deg(1)| ≤ 2
√

deg(F )deg(1)

|#E (Fq)− q − 1| ≤ 2
√

q

Silverman, J.H. The arithmetic of elliptic curves, Springer, 2009
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WEIL BOUNDS - HOW TO GO ABOUT PROVING IT

There are many different approaches to the Weil bound.
I Cohomology
I Intersection theory on the self-product of the curve (Weil’s second proof)
I Comparison of a curve with its Jacobian (Weil’s original argument)
I Polynomial methods (Bombieri-Stepanov)

Hartshorne, R. Algebraic Geometry, Springer, 1977
Freitag, E. and Kiehl, R. Etale cohomology and the Weil conjecture, Springer, 1988
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WEIL BOUNDS - THE IDEA BEHIND THE COHOMOLOGY APPROACH

The idea is that counting fixed points of a self-map on a space should have
something to do with computing traces of some associated linear map1.

Example. If σ is a permutation of {1, . . . , n}, then the number of fixed points of
σ is equal to the trace of the permutation matrix associated to σ.

Example. [Lefschetz trace formula]. Let T : S → S be a continuous map of a
topological space. Under suitable conditions, the quantity∑

i

(−1)i Trace(T ,H i (S))

gives a weighted count of the fixed points of T ; in particular, the nonvanishing of
this quantity can be used to establish the existence of a fixed point of T .

1Kedlaya, K. Course Math 206A - Topics in Algebraic Geometry: Weil cohomology in practice
THE WEIL BOUND Groupe de Travail - 13 October 2022

6



L.COLÒ
I
2
M

WEIL BOUNDS - THE WEIL COHOMOLOGICAL METACONJECTURE

For some field K of characteristic zero, there is a series of contravariant
“cohomological” functors

H i : {algebraic varieties over Fq} −→ {finite dimensional vector spaces over K}

satisfying the following formula: for i = 0, . . . , 2d = 2 dim(X )

#X (Fqn ) =

2d∑
i=0

(−1)i Trace(F n,H i (X ))
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THE COHOMOLOGY APPROACH - CLASSICAL COHOMOLOGY
H•(X ) =

⊕
i

H i (X )

I H i (X ) is a finite dimensional vector space over K and H i (X ) = 0 for i > 2d .

I Poincaré Duality. There is a bilinear form H i (X )× H2d−i → H2d ' K
allowing the identification

H2d−i (X ) ∼∼∼B Hi (X ) = Hom(H i (X ),K )

I Künneth formula H•(X )⊗ H•(Y ) ' H•(X × Y )

I Any morphism f : X → X defines a linear map f (i) : H i (X )→ H i (X ) such
that the f (i) constitute a homomorphism of algebras f • : H•(X )→ H•(X ).

Fix(f ,X ) =

2d∑
i=0

(−1)n Trace(f (i))

I If Y is a nonsingular subvariety of X of dimension d − 1 then there is a
natural mapping H i (X )→ H i (Y ) which is bijective for i ≤ d − 2 and
injective for i = d − 1
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THE COHOMOLOGY APPROACH - CLASSICAL COHOMOLOGY

H•(X ) =
⊕

i

H i (X )

I Let h ∈ H2(X ) and L : a→ ah be the multiplication-by h map in H•(X ); then
Ld−i : H i (X )→ H2d−i (X ) is an isomorphism for i ≤ d .
This implies that if we have a morphism f : X → X such that f (2)(h) = qh
where q > 0 is a rational number, then gi = q−i/2f (i) is an automorphism of
H i (X )⊗K K and if αi ,j are the eigenvalues of f (i) in K , then
{qi/2/αi ,j}i ,j = {α2d−i ,j/qd−(i/2)}

I In each H i (X ) for i ≤ d there is a subspace Ai (X ) stable under f (i) and on
each Ai (X ), as v.s., there is a scalar product such that, if f verifies
f (h) = qh, each gi is a unitary mapping for that scalar product and all the
αi ,j have absolute value qi/2.
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THE COHOMOLOGY APPROACH - A THEOREM OF SERRE

Theorem
There does not exist a cohomology theory for schemes over Fq with the
following properties:
I Functorial
I Künneth formula
I H1(E ) = Q2

Fact
There’s no cohomology theory with Q-coefficients for schemes over Fq .
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THE COHOMOLOGY APPROACH - AN EXAMPLE OF SERRE
Let E be an elliptic curve.

Classical cohomology

For every coherent sheaf F on a proper scheme X

χ(X ) =
∑

i

(−1)ihi (X ,F)

I Since χ(E ) = 2− 2g = 0 we have H1(E ) = Q2.
I There is a natural action of End(E ) on H1(E ) on the right.
I This action is compatible with products and sums (thanks to functoriality

and Künneth formula).
I Thus, we have a representation of End(E ) on H1(X ) and also of

End0(E ) = End(E )⊗ Q.
I But, if E is supersingular, then End0(E ) is of rank 4 and we cannot have a

dimension 2 representation over Q.
I This also excludes K = Qp and R as End0(E )⊗ Qp is still non-split.

THE WEIL BOUND Groupe de Travail - 13 October 2022
10



L.COLÒ
I
2
M

THE COHOMOLOGY APPROACH - A GOOD COHOMOLOGY THEORY

There are essentially two known approaches to construct a Weil cohomology
theory
I K = Q`, ` 6= p; Étale cohomology developed by Grothendieck.
I K = Qp; Rigid cohomology.
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THE COHOMOLOGY APPROACH - ÉTALE MORPHISMS

Definition
We say that a morphism of schemes f : X → Y is étale if it is
I Flat, i.e., f #

x : OY ,f (x) → OX ,x is flat for every x .
I Unramified, i.e., mf (x)OX ,x = mx and the extension K (y)→ K (x) is

separable.

For example, if L/K is a finite extension, then Spec(L)→ Spec(K ) is étale.

Also, if L/K is of number fields, Spec(OL)→ Spec(OK ) is flat and for all q ⊆ OL

above p ⊆ OK we have k(q)/k(p) separable.
Hence, Spec(OL)→ Spec(OK ) is unramified (and hence étale) at q ⊆ OL if and
only if q(OL)q is generated by p = q ∩ OK , which is the usual definition of
unramifiedness.
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THE COHOMOLOGY APPROACH - PROPERTIES OF ÉTALE MORPHISMS

Properties

I Open immersions are étale.
I Compositions of étale morphisms are étale.
I Base change of étale is étale

THE WEIL BOUND Groupe de Travail - 13 October 2022
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THE COHOMOLOGY APPROACH - ÉTALE TOPOLOGY
One does not need to have a topological space to build up a sheaf theory (and a
cohomology theory for sheaves). Indeed, let C be a category with, for each
object U of C a distinguished set of families of maps {Ui → U}i∈I , called the
covering of U , that satisfy:
I For a covering {Ui → U}i∈I of U and any morphism V → U in C, the fiber

products {Ui ×U V → V}i∈I exist and form a covering of V
I If {Ui → U}i∈I is a covering of U , and for each i ∈ I , {Vi ,j → Ui}j∈J is a

covering of Ui , then {Vi ,j → U}i ,j is a covering of U
I For all U in C, the family {U → U} is a covering of U .

Such a system of coverings is called a Grothendieck topology on C and C
together with this topology is called a site.

Definition
We define the étale site of X (denoted Xet ) as a category EtX with objects
the étale morphisms U → X and arrows the X -morphisms (the obvious
commutative diagrams) φ : U → V.
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THE COHOMOLOGY APPROACH - ETALE SHEAFS EXAMPLES

A presheaf for the étale topology on X is a contravariant functor F : EtX → Ab It
is a sheaf if

F(U)→
∏
i∈I

F(Ui )⇒
∏
i ,j

F(Ui ×U Uj)

is exact for all étale coverings {Ui → U}i∈I

Constant sheaf. This takes any étale open set (U → X ) to a fixed abelian
group A.

Sheaf of regular functions. This takes any étale open set (U → X ) of X to the
space O(U) of regular functions of U

Sheaf of invertible functions. It is denoted Gm and it takes any étale open set
(U → X ) of X to O×(U), the units of the regular functions of U .

Sheaf of n-th roots of unity. �n takes any étale open set (U → X ) of X to the
n-th roots of unity in O(U).

THE WEIL BOUND Groupe de Travail - 13 October 2022
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THE COHOMOLOGY APPROACH - ÉTALE COHOMOLOGY
The functor

Sh(Xet) −→ Ab
F −→ Γ(X ,F)

is left exact and we can define H r (Xet ,−) as its r -th right derived functor. One
then has the usual properties
I For any sheaf F , H0

et(X ,F) = H0(Xet ,F) = Γ(X ,F).
I H r

et(X , I) = 0 for r > 0 if I is injective
I Functoriality; a short exact sequence of sheaves

0 −→ F ′ −→ F −→ F ′′ −→ 0

gives rise to a long exact sequence in cohomology

0 −→ H0
et(X ,F ′) −→ H0

et(X ,F) −→ H0
et(X ,F ′′) −→ H1

et(X ,F ′) −→ . . .

THE WEIL BOUND Groupe de Travail - 13 October 2022
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THE COHOMOLOGY APPROACH - ETALE COHOMOLOGY FOR CURVES

Étale cohomology of a curve

Let X be a nonsingular projective curve over K . For n invertible in K

H r
et(X ,Z/nZ) =


Z/nZ if r = 0

(Z/nZ)2g if r = 1

Z/nZ if r = 2

Let X be a non-singular projective curve. We want to calculate H r
et(X ,Z/`nZ)

We define
H r

et(X ,Z`) = lim
←−

H r
et(X ,Z/`nZ))

H r
et(X ,Q`) = H r

et(X ,Z`)⊗ Q`

THE WEIL BOUND Groupe de Travail - 13 October 2022
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THE COHOMOLOGY APPROACH - LEFSCHETZ TRACE FORMULA

Theorem
We have the Lefschetz formula

#X (Fq) =

2d∑
i=0

(−1)n Trace (F ,H r (Xet ,Q`))

Theorem

Weil proved that the eigenvalues πi of F onH1(Xet ,Q`) are algebraic integers
with |πi | = q1/2.

Thus

|#X (Fq)− (q + 1)| = |Trace
(
F ,H1(Xet ,Q`)

)
| ≤

2g∑
i=1

|πi | ≤ 2g
√

q
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THE COHOMOLOGY APPROACH - DE RAHM COHOMOLOGY
Let K be a field, and A a finitely generated K -algebra.

Definition
We define the module of Kähler differentials as

ΩA/K =
free module on formal symbols dr (r ∈ A)

〈dr (r ∈ K ), d(r + s)− dr − ds, d(rs)− r ds − s dr〉

We set Ωi
A/K =

∧i ΩA/K ; there is a derivation map

d : Ωi
A/K −→ Ωi+1

A/K

f0 df1 ∧ . . . ∧ dfi −→ df0 ∧ df1 ∧ . . . ∧ dfi

We get the de Rahm complex Ω•A/K and we define the de Rham cohomology of
A as

H i
dR(A/K ) = H i (Ω•A/K )

If X = Spec(A), then H i
dR(X/K ) = H i

dR(A/K ).
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THE COHOMOLOGY APPROACH - MONSKY-WASHNITZER COHOMOLOGY
Let char(k) = p. We set R to be the Witt vectors of k . We have R/pR = k . We
set K = Frac(R).

Elkik-Arabia Theorem

There is a unique (up to isomorphism) R algebra Â complete w.r.t. the p-adic
topology, flat over R, such that

Â⊗R k = A

For A = k [x ] this is

Â = R〈x〉 =

{
+∞∑
n=0

anxn |an|p → 0

}

Problem
If we try to mimic the de Rahm construction we get infinite dimensional
objects
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THE COHOMOLOGY APPROACH - MONSKY-WASHNITZER COHOMOLOGY

Let char(k) = p. We set R to be the Witt vectors of k . We have R/pR = k . We
set K = Frac(R).

Monsky-Washnitzer

We can consider a subring

A† =

{
+∞∑
n=0

anxn lim
n→∞
|an|ρn = 0 some ρ > 1

}

Elements of Â are functions on the closed unit disc. A† consists of functions on
the closed unit disc which in fact converge on some bigger disc.

Monsky-Washnitzer cohomology

We define

H i
MW (A/K ) = H i (Ω•A†/K )
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THE COHOMOLOGY APPROACH - MW COHOMOLOGY FOR CURVES
I Suppose X is an hyperelliptic curve y2 = P(x) of genus g = (deg(P)− 1)/2

I Its coordinate ring is A = K [x ,y ,z ]
(y2−P(X ),yz−1) = K [x ,y ,y−1]

(y2−P(X ))

I Construct A∞, the p-adic completion of A.
I Consider the weak completion of A:

A† =

{
+∞∑

n=−∞

Bn(x)

yn Bn ∈ K [x ], deg Bn ≤ 2g

}
with the further condition that νp(Bn(x)) grows faster than some linear
function of |n| as |n| → ±∞.

I The only non-trivial MW cohomology groups are H0 and H1.
I The first cohomology group splits into two eigenspaces under the

hyperelliptic involution

H1
MW (X/K )+ with basis

{
x idx/y2}

0≤i≤2g

H1
MW (X/K )− with basis

{
x idx/2y

}
0≤i≤2g−1
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THE COHOMOLOGY APPROACH - MW LEFSCHETZ FORMULA

Lefschetz formula

#X (Fqr ) = qr − Trace(qF−1,H1
MW(X/K))

I K is an unramified extension of Qp. Thus, we have a unique automorphism
FK lifting the Frobenius of Fq . Let F denote a p-power Frobenius lift on A†:

F (x) = xp

F (y) = (FK (P)(xp))1/2

I Now we apply it to H1
MW(X ′):

F ∗ωi =
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FK lifting the Frobenius of Fq . Let F denote a p-power Frobenius lift on A†:

F (x) = xp

F (y) = yp
∞∑
i=0

(
1/2
i

)
(FK (P)(xp)− P(x)p)i

y2ip

I Now we apply it to H1
MW(X ′):

F ∗ωi =
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THE COHOMOLOGY APPROACH - MW LEFSCHETZ FORMULA
Lefschetz formula

#X (Fqr ) = qr − Trace(qF−1,H1
MW(X/K))

I K is an unramified extension of Qp. Thus, we have a unique automorphism
FK lifting the Frobenius of Fq . Let F denote a p-power Frobenius lift on A†:

F (x) = xp

F (y) = yp
∞∑
i=0

(
1/2
i

)
(FK (P)(xp)− P(x)p)i

y2ip

I Now we apply it to H1
MW(X ′):

F ∗ωi = px ip+p−1y

(
y−p
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INTERSECTION THEORY - SURFACES
By surface, we refer to a smooth projective variety of dimension 2 over an
algebraically closed field k . By a curve on a surface, we mean an effective
divisor on the surface. We say that two curves C and D meet transversely
if, for every common point P, their local defining equations f and g generate
the maximal ideal of the local ring OP,X .

We would like to define a bilinear form

Div(X )×Div(X )→ Z (C ,D) 7→ C .D

that expresses the intersection number of two curves on a surface.
I If C and D meet transversely at d points, then C .D = d
I C .D = D.C and (C1 + C2).D = C1.D + C2.D
I The intersection number depends only on linear equivalence classes

C .D =
∑

P∈C∩D

len (OP,X/(f , g))
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INTERSECTION THEORY - RIEMANN-ROCH FOR SURFACES

Lemma (Adjunction formula)

Let C be nonsingular curve on X of genus g. Then the following holds:

g =
C .(C + KX )

2
+ 1

Riemann-Roch
Let X be a surface and D a divisor on X . Let KX be the canonical class,
`(D) = dimkH0(X ,OX ) and s(D) = dimkH1(X ,OX ) and the arithmetic
genus of X , ρa = χ(OX )− 1. Then,

`(D)− s(D) + `(KX −D) =
1
2

(D.(D − KX )) + χ(OX )
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INTERSECTION THEORY - HODGE INDEX THEOREM

Let H be a very ample divisor on a surface X . Then for a curve C on X , the
degree of C under the embedding given by H into Pn coincides with C .H.

Lemma
Let H be an ample divisor on X , and let D be a divisor such that D.H > 0
and D2 > 0. Then for all n � 0, nD is linearly equivalent to an effective
divisor.

Hodge Index Theorem

Let H be an ample divisor on the surface X and let D be a non zero divisor
with D.H = 0. Then D2 < 0.

Nakai-Moishezon criterion

A divisor D on a surface X is ample if and only if D2 > 0 and D.C > 0 for all
irreducible curves C in X .
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INTERSECTION THEORY - WEIL BOUND
The idea is to use the intersection theory on the surface X ×Fq

X .
I For every morphism of curves f : X → Y , we have a prime correspondence

Γf := (IdX × f )(X ) ⊂ X × Y

called the graph of f .
I We let ∆ be the graph of the identity morphism IdX : X → X , also called the

diagonal correspondence
I We let Γ = ΓF be the graph of Frobenius given by the image of the closed

immersion
X → X × X x 7→ (x ,F (x))

Notice that this is a prime correspondence, and therefore a curve of genus
g = g(X ).

I Since Γ and ∆ intersect transversely at all points where they intersect

N(X ) = #Fix(F ,X ) = Γ.∆
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INTERSECTION THEORY - PROVING THE WEIL BOUND
I We have ∆2 = 2− 2g as ∆2 is the degree of the normal bundle to the

diagonal embedding X → X × X ; this is the tangent bundle to X , which has
degree 2− 2g.

I To compute Γ2 we note that Γ2

2g − 2 = Γ2 + Γ.KX×X

We can express KX×X as the sum of the pullbacks π1 ∗ KX + π∗2KX . Now Γ

intersects X × {∗} and {∗} × X with multiplicity 1 and q. Since
deg KX = 2g − 2, this gives Γ2 = 2g − 2− (q + 1)(2g − 2) = q(2− 2g).

Proposition

Let D be any divisor on X × X with a = D.(X × {∗}) and b = D.({∗} × X ).
Then

|D.∆− (a + b)| ≤
√

2g(2ab −D2)

I The Weil bound follows by taking D = Γ for which a = 1 and b = q.
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WEIL BOUND - A FIRST REFINEMENT

Theorem
We have

|N − (q + 1)| ≤ g
[
2q1/2

]
We have seen

#X (Fqn ) = 1 + qn −
2g∑
i=1

πn
i

Proposition

One can order the πi in such a way that πg+1, . . . , π2g are equal to π1, . . . , πg

respectively.

I It suffices to show that if q = q2
0 then q0 and −q0 both occur with even

multiplicity.
I all the other cases follow by the stability under Ga`(Q/Q)).
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PROOF OF THE REFINED WEIL BOUND

I N(X )− (q + 1) = −
2g∑
i=1

πi = −
g∑

i=1

xi where xi = πi + πi

I Let m =
[
2q1/2

]
, then |xi | < m + 1 for every i .

I Let yi = m + 1 + xi , then yi > 0.
I The yi ’s are stable under Galois conjugation and thus they are algebraic

integers. Hence their product is a natural number.
I The arithmetic-geometric mean inequality gives

y1 + . . .+ yg

g
≥ (y1 · · · yg)1/g ≥ 1

Thus
y1 + . . .+ yg

g
= m + 1 +

1
g

g∑
i=1

xi ≥ 1

I This gives the inequality Trace(F ) ≥ −gm. For the other inequality, one
applies the same proof to the opposite of the Frobenius.
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REFINED WEIL BOUND - AN EXAMPLE
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MORE ON THE REFINED WEIL BOUND

Theorem
If Trace(F ) = ±gm, then the xi ’s are equal to ±m.

Corollary

If N = 1 + q + 2m, then the eigenvalues of the Frobenius are equal to
(−m ±

√
m2 − 4q)/2 (g times each).
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TRACE OF ALGEBRAIC INTEGERS - A THEOREM OF SMYTH
Let A be a g-dimensional abelian variety over Fq .

I If Trace(F ) = ±gm (defect 0 case) then (x1, . . . , xg) = ±(m, . . . ,m).
I If Trace(F ) = ±(gm − 1) (defect 1 case) there are two possibilities for

(x1, . . . , xg). Namely,

±(m,m, . . . ,m︸ ︷︷ ︸
g−1

,m − 1) and ±

m,m, . . . ,m︸ ︷︷ ︸
g−2

,m +
−1±

√
5

2


I If Trace(F ) = ±(gm − 2) (defect 2) there are 7 possibilities for

(x1, . . . , xg).

± (m,m, . . . ,m,m − 2) (g ≥ 1)

± (m, . . . ,m,m − 1,m − 1) (g ≥ 2)

±
(
m, . . . ,m,m +

√
2− 1,m −

√
2− 1

)
(g ≥ 2)

±
(
m, . . . ,m,m +

√
3− 1,m −

√
3− 1

)
(g ≥ 2)

±
(
m, . . . ,m,m − 1,m + (−1±

√
5)/2

)
(g ≥ 3)

±
(
m, . . . ,m,m + (−1±

√
5)/2,m + (−1±

√
5)/2

)
(g ≥ 4)

±
(
m, . . . ,m,m + 1− 4 cos2(aπ/7)

)
, a = 1, 2, 3 (g ≥ 3)
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TRACE OF ALGEBRAIC INTEGERS - A THEOREM OF SIEGEL
Theorem
Let α be a totally positive algebraic integer of degree deg(α). If α is neither
1 nor (3±

√
5)/2 then

Trace(α) >
3
2
deg(α)

I If α = 1, then Trace(α)/deg(α) = 1.
I If α = (3±

√
5)/2, then Trace(α)/deg(α) = 3/2.

I If α 6= 1, (3±
√

5)/2 then Smyth proved Trace(α)/deg(α) ≥ 5/3.

Corollary

Let k(α) = Trace(α)− deg(α). Then:
I If k(α) = 0, then α = 1.
I If k(α) = 1, then α = 2 or α = (3±

√
5)/2.

I If k(α) = 2, then α = 3 or α = 2±
√

2 or 2±
√

3 or α is one of the
conjugates of 4 cos2(π/7)
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TRACE OF ALGEBRAIC INTEGERS - PROOF OF THE COROLLARY

Suppose α is not in the list. Then by Siegel’s theorem k(α)/deg(α) > 1/2, i.e.,
deg(α) < 2k(α)

I If k(α) < 2, then deg(α) = 1 and α = 1, 2.
I If k(α) = 2, then deg(α) < 4

• deg(α) = 1 gives α = 3
• deg(α) = 2 gives Trace(α) = 4 and α is root of x2 − 4x + n with all conjugates

(roots) positive. Then n = 1, 2, 3 and α = 3, α = 2±
√

2 or 2±
√

3
• deg(α) = 3 gives the roots of a cubic polynomial P(x) = x3 − 5x2 + px + q

with positive roots.
1 ≤ p ≤ 8 since the derivative must have 2 positive roots;
1 ≤ q ≤ 4 by the arithmetic-geometric mean inequality;
p ≥ 3q2/3 ≥ 3 by the arithmetic-geometric mean inequality;
Since we need real roots (positive discriminant) we remain with 4 possibilities
(p, q) ∈ {(6, 2), (5, 1), (7, 2)︸ ︷︷ ︸

reducible polynomials

, (6, 1)}
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TRACE OF ALGEBRAIC INTEGERS - PROOF OF SMYTH THEOREM

I Let P(X ) = X g − a1X g−1 + . . . be the polynomial
∏

i (X −m − 1 + xi ).

I Its coefficients are in Z, its roots are real and positive, and its coefficient a1 is
equal to gm + g − Trace(F ).

I The defect of P is k(P) = a1 − g = gm − Trace(F ) and we assumed it
= 0, 1, 2.

I We write P as the product of irreducible polynomials Qλ. The sum of the
defects of the Qλ is 0, 1 or 2. Thus their roots (and therefore those of P )
belong to the set described before

{1, 2, 3, (3±
√

5)/2, 2±
√

2, 2±
√

3, 4 cos2(aπ/7) a = 1, 2, 3}
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For a real t, we denote by {t} = t − [t] the fractional part of t. We have
2q1/2 = m + {2q1/2}.

Proposition

The second defect 1 case

±

m,m, . . . ,m︸ ︷︷ ︸
g−2

,m +
−1±

√
5

2


can only occur if {2q1/2} > (

√
5− 1)/2 = 0.6180

Proposition

The third, fourth, fifth, sixth and seventh defect 2 cases can only occur if
{2q1/2} is greater than

0.4142 . . . 0, 7320 . . . 0.6180 . . . 0.6180 . . . 0.8019 . . .

respectively.
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TRACE OF ALGEBRAIC INTEGERS - PROOF OF SIEGEL THEOREM
Let {Pλ}λ∈Λ be a finite family of monic polynomials with all roots real and
positive, and coefficients in Z.
Let (cλ)λ∈Λ be positive real numbers. For x > 0 such that Pλ(x) 6= 0 for every λ,
let g(x) = x −

∑
λ cλ log|Pλ(x)| and let min(g) = minx≥0 g(x)

Theorem
Let α be a totally positive algebraic integer of degree d which is not a root of
any Pλ. Then

Trace(α)/deg(α) ≥ min(g)

I Let d = deg(α) and α1, . . . , αd its conjugates.

I αi > 0 for all i . Up to sign, the resultant of Pλ and the minimal polynomial of
α is Pλ(α1) · Pλ(α2) · · ·Pλ(αd), hence lies in Z \ {0}. Thus

|Pλ(α1) · Pλ(α2) · · ·Pλ(αd)| ≥ 1 =⇒
d∑

i=1

log (|Pλ|) ≥ 0

I We get Trace(α)

deg(α)

THE WEIL BOUND Groupe de Travail - 13 October 2022
37



L.COLÒ
I
2
M

TRACE OF ALGEBRAIC INTEGERS - PROOF OF SIEGEL THEOREM
Let {Pλ}λ∈Λ be a finite family of monic polynomials with all roots real and
positive, and coefficients in Z.
Let (cλ)λ∈Λ be positive real numbers. For x > 0 such that Pλ(x) 6= 0 for every λ,
let g(x) = x −

∑
λ cλ log|Pλ(x)| and let min(g) = minx≥0 g(x)

Theorem
Let α be a totally positive algebraic integer of degree d which is not a root of
any Pλ. Then

Trace(α)/deg(α) ≥ min(g)

I Let d = deg(α) and α1, . . . , αd its conjugates.
I αi > 0 for all i . Up to sign, the resultant of Pλ and the minimal polynomial of
α is Pλ(α1) · Pλ(α2) · · ·Pλ(αd), hence lies in Z \ {0}. Thus

|Pλ(α1) · Pλ(α2) · · ·Pλ(αd)| ≥ 1 =⇒
d∑

i=1

log (|Pλ|) ≥ 0

I We get Trace(α)

deg(α)

THE WEIL BOUND Groupe de Travail - 13 October 2022
37



L.COLÒ
I
2
M

TRACE OF ALGEBRAIC INTEGERS - PROOF OF SIEGEL THEOREM
Let {Pλ}λ∈Λ be a finite family of monic polynomials with all roots real and
positive, and coefficients in Z.
Let (cλ)λ∈Λ be positive real numbers. For x > 0 such that Pλ(x) 6= 0 for every λ,
let g(x) = x −

∑
λ cλ log|Pλ(x)| and let min(g) = minx≥0 g(x)

Theorem
Let α be a totally positive algebraic integer of degree d which is not a root of
any Pλ. Then

Trace(α)/deg(α) ≥ min(g)

I Let d = deg(α) and α1, . . . , αd its conjugates.
I αi > 0 for all i . Up to sign, the resultant of Pλ and the minimal polynomial of
α is Pλ(α1) · Pλ(α2) · · ·Pλ(αd), hence lies in Z \ {0}. Thus

|Pλ(α1) · Pλ(α2) · · ·Pλ(αd)| ≥ 1 =⇒
d∑

i=1

log (|Pλ|) ≥ 0

I We get
Trace(α)

deg(α)
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1
d

d∑
i=1

αi
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|Pλ(α1) · Pλ(α2) · · ·Pλ(αd)| ≥ 1 =⇒
d∑

i=1

log (|Pλ|) ≥ 0

I We get
Trace(α)

deg(α)
=

1
d

d∑
i=1

g(αi ) +
1
d

∑
λ∈Λ

d∑
i=1

cλ log (|Pλ|)
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TRACE OF ALGEBRAIC INTEGERS - SIEGEL BOUND

To obtain Siegel’s bound, we need to exclude x = 1 and x = (3±
√

5)/2 which
are roots of x2 − 3x + 1. We take

g(x) = x − a log|x | − b log|x1| − clog|x2 − 3x + 1|

with a, b, c > 0.
If we choose a = 0.574, b = 0.879 and c = 0.374 we find

min(g) > 1.59

Hence
Trace(α)

deg(α)
> 1.59
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