

LET P BE A PRIME WHERE AND LET NE Z WC CAN WWE N in Page
N=Q_{a+Q_1}P_{+} - + Q_{k}P^{k}
Definition A p-ADK INTEGER IS A FORMA SERIE
Q =
$$\sum_{i \ge 0}^{T} Q_i P^{i}$$
 $0 \le Q_i \le P$
THIS SET IS DENDTED Z_p
OF COURSE WE GET A WEU DEFINED MDP Z_aP_{k-}Z/P^{k-Z} OBTAINED
BY WITING Q ATT kth TERM ZiQ₁Pⁱ⁻ + Q₀, Q₁Pⁱ⁻ + Q₀, Q₁Pⁱ⁻ + Q₀, Q₁Pⁱ⁻ + Q₀, Qⁱ⁻
NOTICE THIST TI_R (Q) = T_{k-1} (Q) mod P^{k-1}
U PQUIDICE (A₀) - Q₁, Q₁, ...,) *H* integers such that $Q_{k} \equiv Q_{k}$
mod kⁱ \forall kⁱ
THUS WE GET THE KOWOWING BIJECTION Z_P $\leq \lim_{h} Z/P^{n}Z$
Recall INVERSE SYSTEM : (A_i)_{i < T} WITH MAPS $P_{ij} : A_{j} \rightarrow A_i \forall i \le j$
WITH THAT $P_{ii} = Td$ AND $P_{ij} \circ P_{jk} = P_{ik}$
Lim. A_i = { $\vec{d} \in TLA_i \mid Q_i = P_{ij}(Q_j) \forall i \le j$ In T?
NO OK (ASE Z_P IS AN INVERSE UNIT OF RINGS (COMMOTETIVE WITH 4)
ENDOWING Z_P WITH THE SOME SARE SERIES OF THE FORM
 $Q = \sum_{n \ge n_0}^{T} Q_n P^n$
THE SET IS DENOTED Q_P AND IT ISD FIED Q_P = Trace (Z_P)
BC QUIDE Q $\subset Q_P$
ME DEFINITION OF COMPARENT OF RINGS (COMMOTETIVE WITH 4)
ENDOWING Z_P WITH THE SOME SARE SERIES OF THE FORM
 $Q = \sum_{n \ge n_0}^{T} Q_n P^n$
THE SET IS DENOTED Q_P AND IT ISD FIED Q_P = Trace (Z_P)
BC QUIDE Q $\subset Q_P$

P-SDIC VISUNDAD

LET $\alpha \in Q \setminus \{0\} = \} \alpha = p^k g$ for $k \in \mathbb{Z}, (g, p) = (h, p) = 1$ WE DEFINE THE VOWSTION^h ST P (p-SOI (SWATION) $V_P(\alpha) = k$ SND P-SOLC SBOWTE VOLLE $|\alpha|_P = P^{-\nu_P(\alpha)}$ Properties $v_{p}: Q, \longrightarrow \mathbb{Z} \cup \{\infty\}$ $v_{P}(0) = \infty$ by convention $\gamma_{p}(ab) = \gamma_{p}(a) + \gamma_{p}(b)$ $\gamma_{p}(a_{+}b) \geq \min \{\gamma_{p}(a)_{+}\gamma_{p}(b)\}$ $\gamma_{p}(Q) = \infty \langle = \rangle Q = 0$ $l \cdot l \rho \cdot \mathcal{Q} \longrightarrow \mathbb{R}_{>0}$ lable = lalelble $|Q_+b|_p \leq max ||a|_p, |b|_p \leq |a|_{p+1}b_p$ 1Qp=0(=> Q=0 Clearly this absolute value introduce a metric $d_p(a,b) = (b-a)_p$ Theorem (Ostrowski) EVERY NONTRIVIAL SEDUNTE VOLLE ON QIS this means that FEQUIVALENT TO I-IP OR TO THE USUAL ABOUNTE they define the same topology. In ~ I 12 <=> 3 x & R: IX In = IX 12 × 5 X & K Theorem $0 \neq \alpha \in \mathbb{Q}$ THEN $\Pi |Q|_{\gamma} = 1$ $\gamma = \frac{1}{20}, \frac{2}{3}, \frac{3}{5}, \frac{7}{7}, \dots$ Theorem Qp ISTHE COMPLETION OF Q WITH RESPECT TO 11p NON ARCHIMEDEAN FIELDS Definition AN OBSOLUTE VOLVEON KISA MAP 1.1:K, R JOTISFYING i) IX120 VXEK, IX1=0 <=> ×=0 $\dot{\mathcal{U}}$) $|XY| = |X| \cdot |Y| \quad \forall X, Y \in K$ WW) |×+Y| ≤)×| + |Y| ∀×,Y ∈ K WE SAY THAT I I ON K IS NON- ARCHIMEDED N IF, IN DODITION $uui) |X_{+}Y| \leq max \{|X|, |Y|\} \forall X_{+}Y \in K$ to it we can associate a valuation $v(x) = -\log |x|$ satisfying the same properties as v_p

Definition THE VALUATION RING IS $\mathcal{D}_{K} = \frac{1}{2} \times \mathbb{E} \left\{ 1 \mid x \mid \leq 1 \right\}$ THE VALUATION RING IS $\mathcal{D}_{K} = \frac{1}{2} \times \mathbb{E} \left\{ 1 \mid x \mid < 1 \right\}$ IDEAL $\frac{1}{2} = \frac{1}{2} \times \mathbb{E} \left\{ 1 \mid x \mid < 1 \right\} = \frac{1}{2} \times \mathbb{E} \left\{ 1 \mid x \mid < 1 \right\} = \frac{1}{2} \times \mathbb{E} \left\{ 1 \mid x \mid < 1 \right\}$ THE RESIDUE FIELD IS

k=DK/D

Definition & Way FIELD IS A HOUSDORFF, Walk to a compart maghbolized WITH & NON-DISCRETE TOPOLOGY

Theorem EVERY LOCAL FIELD IS ISOMORPHIC OS A Topological field to 1) FARCHIMEDEAN AND F= IR OR F=C

2) F IS NON-ARCHIMEDEDN AND CHOIF=O AND FFIN EXT OF QP

3) F IS NON-DRCHIMEDEDN OND CHAR F= P => F FINEXT OF F (CE))

Lemma F FIELD. THEN THE TOWOWING STATEMENT HOLD

a) F is drichimeded would field <=> F is complete with respect 10 AN ARCHIMEDED ABOWNE VISILLE

6) F 18 NON SRCHIMEDEDN (=> F 15 COMPLETE WITH RESPECT 10

A NON TRIVIAL DISCRITE VOLUDION

Lemma F IS NON DRCHIMEDEDN => F IS TOTALLY DISCONDECTED AND SF IS COTIPOGT TOTOLLY DISCONDECTED TOPOLOGICAL RING the component containing 2 is 121

<u>Proportion</u> K NON-ARCHIMEDEDN FIELD 1) $b \in B(a,r) => B(a,r) = B(b,r)$

2) B (Q, r) IS OPEN AND CLOSED

3) B(Q,r)nB(b,s) = Ø <=> B(Q,r) CB(b,s) DR VICEVERSA

QUATERNION ALGEBRAS AND QUADRATIC FORMS
We now try to classify quaternion algebras over local fields.
Theorem LET F_{\pm} () BE & LOCOL FIELD. THENE THERE IS A UNIQUE DIVISION QUATERNION & LGEBRES B ONER FUP TO F-& GEBRA NOMORPHISM
PROVING THIS THEOREM IS EQUIVIOLENT TO THE ROLLOWING
Proposition F + C LOCAL FIELD. THERE IS A UNIQUE ANISOTROPIC TERNARY QUADRATIC FORM OVER F UP TO SIMILARITY
Lamma A QUADRISTIC SPOCE V OVER A FINITE FIELD WITH dim = V > 3 IS ISOTROPIC
Lemma chark $\neq 2$ Q: M, \rightarrow 9 QUADRATIC TORM OVER R. THEN THE REDUCTION Q mod $p: M \otimes_{R} k$, $\longrightarrow k$ of Q MODULO AS IS NONSINGULAR OVER K. MOREOVER Q IS ISOTROPIC OVER 9 <=> Q mod p IS ISOTROPIC.
$\frac{\text{lemma suppose char } k \neq 0. \ Q: M, \longrightarrow 9 \text{ won singular with M FREECP}}{\text{RANK } \ge 3 => Q \text{ is isotropic}$
$\frac{\text{lemma}}{\text{THE CLOSES OF 1, e, tt, ett with eer R^{X} REDUCES HODULD FOR NONSQUARE IN K}^{2} \sim (\mathbb{Z}/2\mathbb{Z})^{2} \text{ and it is represented By the closes of 1, e, tt, ett with eer R^{X} REDUCES HODULD FOR NONSQUARE IN K}$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
ER NONTRIVIAL IN K/80(K)
$B \simeq (e_{P}(Q_{P}))$