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1918 THE DEFINITION WAS IMPROVED BYOstrowski

HE WAS WORKING WITH DBOOWTEVDUtd ON ④ AND FOUND HOTTER

DESCRIPTION Of Qp

Hiswork describes the topology that this object have

1944 M
. KRASNER INTRODUCED THECONCEPT Of 047AMERIC FIELDS ( TO
WHICH P -DNC WhBERO BETONG ) AND IN 1954 HE PROVEDTHAT
THE TOPOLOGY toTOTDLLY DIONNEOED
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theorem (Ostrowski ) EVERY homeWIDLDBDWEVDUE ON Is

this means that {EQUIVALENT TO l - Ip OR TO THE 000dL DBDWTE
they define the
same topology. VALUE
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theorem Of X E THEN IT 10 In = I v -
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theorem Qp IOTHE COMPLETION Of Q WITH RESPECT TO Ilp

NON ARCHIMEDEAN FIELDS
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A VDWDTON 10 DISCRETE IF U ( KY IS DISCRETE IN IR

Definition THE VAWDROH RING is Ok = l X E K I TITE i }
THE VDWDRON RING IS D LOCAL DOMAIN WITH D UNIQUE MAXIMAL
IDEAL p =3 X E K l l 7 ⇒ Of =3 XE K l l X 1=13
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Definition A LOCAL FIELD IS A HDOODORFF
,
WCDUY COMPACT FIELD

WITH A NON - DISCRETE TOPOLOGY

theorem EVERY LOCAL FIELD IS ISOMORPHIC MRHagiad fieldto
1) FARCHIMEDEAN AND F-

-
IR ,ORF=D

2) F IS RON-ARCHIMEDEAN AND ekedF-0 DND FF IN EXT Of Qp
3) F IS RON -DRCHIMEDEDN DND Chart=p ⇒F FIN EXT Of Fp Gtl)

Lemmy F FIELD
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THEN THETWOWING OTDTEMENT HOLD
QI F IS DRCHIMEDEDN WAL FIELD⇐SF IS COMPLETE WITH RESPECT

D AN ARCHIMEDEAN ABDWIE UDWE

b) F lo WN DRCHIMEDEDN⇒ F IS COMPLETE WITH RESPECT D

D WN new IDL DIORITE VDWDRON

Lemme F lo WN ARCHIMEDEAN ⇒F ISDTALLY DISCONNECTED AND OF
10 COMPACT TODAY DISCONNECTED TOPO GIGL RING
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QUATERNION DLGEBRDS AND QUADRATICFORMS

we now try to classify quaternion algebras over localfields .

÷¥¥E¥¥¥⇒ .
theorem LET Fat 1CBEA LOCAL FIELD. THENETHERE IS AUNIQUE DIVISION

QUATERNION DLGEBRDB OVERFOP toF-ALGEBRA ISOMORPHISM

PROVING THISTHEOREM IS EQUIVALENT TO THE follow ING

.PRO/0OoItI0nF-tC LOCALFIELD .
THERE IS A UNIQUE AN ISOTOPICTERNARY

QUADRATIC FORM OVERF OPTO SIMILARITY

t⇒¥FEe%sncTorn
lemme A QUADRATIC DCE T OVER A FINITEFIELD W lat dime
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V 23 IS
INTROPIC

temme char k¥2 . Q : M
,→
0 QUADRATICFORM OVER R .
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REDUCTION Q mood p : M ④p k→ k of Q M0006 Is

10 HONGNGUDR OVER R
,
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MOREOVER Q IS homeOPICOtto⇐

Q mad pls woreone .
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temme char k to ⇒ FMF ×
2
e#127L 12 DND IT IS REPRESENTED BY

THE CODES OF 1 , e, IT , GT WITH EE R× REDUCES MODULO p
N b WNQUAKE IN k

Corollary F WNARCHIMEDEANWbc FIELD WITH VDWDTION RING 0
AND UNIFORM IZER IT .

LET 8 BE D QUATERNION AGEBRO IF
• IF char k¥2 ⇒ B lo D HURON DLGEBRD ⇐

Be Ce,it IF)
E ER" is WN TRIVIAL IN 12×1/2×2

• IF char F= char k= 2 ⇒ B IS A DIVISION ALGEBRA⇐
Be It , IT ,F )

t ER WNTRIVIAL IN k 18cm

• OVER Qp THERE IS AUNIQUE QUATERNION AUDION ALGEBRA
B e Ce,plQp )


