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1 Topology

1.1 Product Topology
The Cartesian product space

Xp =
∏

n≥0
{0, 1, . . . , p − 1} = {0, 1, . . . , p − 1}N

can be considered as a topological space, with respect to the product topology of the finite discrete sets
{0, 1, . . . , p − 1}.

By the Tychonof theorem, Xp is compact. It is also totally disconnected, i.e., the connected components
are points.

Let us recall that the discrete topology can be defined by a metric

δ(a, b) = 1− δa,b =

{
1 if a 6= b

0 if a = b

Several metrics compatible with the product topology on Xp can be deduced form these discrete ones. For
instance, for a = (a0, a1, a2, a3, . . .) and a = (b0, b1, b2, b3, . . .) in Xp we can define

d(x, y) = sup
n≥0

δ(an, bn)

pn

d ′(x, y) =
∑

n≥0

δ(an, bn)

pn+1
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and so on.
Although all metrics on a compact metrizable space are uniformly equivalent, they are not equally in-

teresting. We will chose the first one defined above since it will give a more faithful image of the coset
structure of Zp.

For each integer n ∈ N, all cosets of pnZp in Zp should be isometric (and, in particular, have the same
diameter).

1.2 Topological Groups
Definition. A topological group is a group G equipped with a topology such that the map G × G −→ G

defined as (x, y)→ xy−1 is continuous.

Remark. With addition, Zp is a topological group. We have indeed

a′ ∈ a + pnZp , b′ ∈ b + pnZp =⇒ a′ − b′ ∈ a − b + pnZp

for all n > 0. In other words, using the p-adic metric defined above we have

|x − a|p ≤ |pn|p = p−n , |y − b|p ≤ |pn|p = p−n =⇒ |(x − y)− (a − b)|p ≤ p−n

proving the continuity of the map (x, y)→ x − y at any point (a, b).

Remark. With respect to multiplication, Z×p is a topological group. There is a fundamental system of
neighborhoods of its neutral element 1 consisting of subgroups:

1 + pZp ⊇ 1 + p2Zp ⊇ . . . ⊇ 1 + pnZp ⊇ . . .

consists of subgroups: if α, β ∈ Zpwe see that (1 + pnβ)−1 = 1 + pnβ′ for some β′ ∈ Zp and hence

a = 1 + pnα , b = 1 + pnβ =⇒ ab−1 = (1 + pnα)(1 + pnβ′) = 1 + pnγ

for some γ ∈ Zp. Consequently,

a′ ∈ a(1 + pnZp) , b′ ∈ b(1 + pnZp) =⇒ a′b′−1 ∈ ab−1(1 + pnZp) (n ≥ 1)

and (x, y)→ xy−1 is continuous. It can be shown that 1 +pZp is a subgroup of index p−1 in Z×p . It is also
open by definition. With respect to multiplication,all subgroups 1 + pnZp (n > 1) are topological groups.

1.3 Topological Rings
Definition. A topological ring A is a ring equipped with a topology such that the maps

(x, y)→ x + y : A× A→ A

(x, y)→ x · y : A× A→ A

are continuous.

Remark. If A is a topological ring, the subgroup A× of units is not, in general, a topological group, since
x → x−1 is not necessarily continuous for the induced topology. However, we can consider the embedding

x → (x, x−1) : A→ A× A

and give A× the initial topology: it is finer than the topology induced by A. For this topology, A× is a
topological group: the continuity of the inverse map, induced by the symmetry (x, y) → (y , x) of A× A is
now obvious.

Proposition 1.1. With the p-adic metric the ring Zp is a topological ring. It is a compact, complete,
metrizable space.
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1.4 Inverse Limits
When a projective system (En, ϕn)n≥0 is formed of topological spaces and continuous transition maps, the
construction of the projective limit shows immediately that the projective limit (E,ψn) is a topological space
equipped with continuous maps ψn : E → En having the universal property with respect to continuous maps.

We know that Zp is an inverse limit
Zp = lim

←
Z/pnZ

Proposition 1.2. In a projective limit E = lim
←
En of topological spaces, a basis of the topology is given by

the sets ψn−1(Un) where n ≥ 0 and Un is an arbitrary open set in En.

1.5 Metric Spaces
Both R and Qp are normed fields and complete metric spaces, both are completions of Q. Since Q is dense
in both of them, they are separable.

Since we have an absolute value on Qp, we can define a metric from it by dp(x, y) = |x − y |p. As usual
we define an open ball in Qp with center a and radius r to be

B(a, r) = {x ∈ Qp | dp(a, x) < r} =
{
x ∈ Qp | |a − x |p < r

}

The close ball in Qp with center a and radius r is denoted by

B(a, r) =
{
x ∈ Qp | |a − x |p ≤ r

}

Finally, the sphere with center a and radius r is denoted by

S(a, r) =
{
x ∈ Qp | |a − x |p = r

}

Remark. Since
{|x − y | | x, y ∈ Qp} = {pn | n ∈ Z} ∪ {0}

we only need to consider the balls of radi r = pn, where n ∈ Z.

Proposition 1.3. The following properties hold

• The open and close balls B(a, r) and B(a, r) are both an open and close sets in Qp.

• The sphere S(a, r) is both an open and close set in Qp.

• Any point of a ball is its center, i.e., for every b ∈ B(a, r), B(b, r) = B(a, r) (the same is true for
closed balls).

• Any two balls in Qp have non empty intersection if and only if one is contained in the other.
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Figure 1: A model for Z7

Taking Z7 as example we see that Zp =
⋃
x∈{0,...,6}B(x, 1) in addition it holds that

B(x, 7−k) =
⋃

j∈{0,...,6}

B(x + j · 7k + 1, 7k+1)
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Proposition 1.4. The set of all balls in Qp is countable.

Theorem 1.5. The set Zp is compact and the space Qp is locally compact.

Theorem 1.6. The space Qp is totally disconnected.

Figure 2: Model of Z3 and Sierpinski gasket.

Figure 3: Fractal Model for Z5.

Figure 4: Level-2 models for Z3, Z5 and Z7

2 Completions

2.1 Construction
Definition. A valued field (K, | |) is called complete if every Cauchy sequence {an}n∈N in K converges to
an element a of K:

lim
n→+∞

|an − a| = 0
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as usual {an}n∈N is Cauchy if for every ε > 0 there exists N ∈ N such that

|an − am| < ε for every n,m ≥ N

From any valued field (K, | |) we get a complete value field (K̂, | |) by the process of completion. We
denote

C = {set of Cauchy sequences of (K, | |)}

m = {set of null-sequences of (K, | |)} = {Cauchy sequences of (K, | |) that tend to 0}

It can be easily proved that C is a ring and m is a maximal ideal. We can therefore define a field K̂ = C/m
and we construct an embedding

K ↪→ K̂

a→ [{a}n∈N]

The valuation | | is extended from K to K̂ in the following way: if a ∈ K is represented by the sequence
{an}n∈N, then |a| = lim

n→+∞
|an|.

Lemma 2.1. The limit exists.

Proof. If a = 0, then {an}n∈N ∈ m, so that an → 0, so that |an| → 0 and so |a| = 0 which is only reasonable.
On the other hand, if a 6= 0 then Lemma 2.2 says that the sequence |an| is constant for sufficiently large n,
which means it certainly has a limit.

Lemma 2.2. Let {an}n∈N ∈ C. The sequence of real numbers {|an|}n∈N is eventually stationary, that is,
there exits an integer N such that |an| = |an+1| whenever n ≥ N.

Proof. • We know that {an}n∈N is Cauchy and it does not tend to 0, then there exist c > 0 and N1 ∈ N
such that |an| ≥ c > 0 for every n ≥ N1.

• By definition there exists N2 such that |xn − xm| < c .

• Now N = maxN1, N2 and

|xn − xm| < |xn| , |xm| ≤ max{|xn| , |xm|} ∀n,m ≥ N

thus, |xn| = |xm| by Lemma 2.3.

Lemma 2.3. If |x | 6= |y |, then |x + y | = max{|x | , |y |}.

Proof. Suppose |x | > |y |, then |x + y | ≤ |x |. On the other hand x = (x + y) − y and so |x | ≤
max{|x + y | , |y |} but |x | > |y | ⇒ |x | ≤ |x + y |.

Proposition 2.4. The following hold

• for a ∈ K̂, |a| does not depend on the choice of the sequence {an}n∈N defining a.

• Let a ∈ K̂, |x | = 0 if and only if x = 0.

• (K̂, | |) is non-archimedean.

• For a ∈ K, |a|K = |a|K̂ .
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2.2 Properties

To prove that we have indeed obtained a completion we have to show that K is dense in K̂ and that K̂ is
complete.

Proposition 2.5. K is dense in K̂.

Proof. We need to show that any open ball around an element a ∈ K̂ contains an element of K (a constant
sequence).

Fix ε > 0 and a representation {an}n∈N of a. Take ε′ < ε; there exists N ∈ N such that |an − am| < ε′

for every n,m ≥ N. Now we show that {aN}n∈N ∈ B(a, ε). We recall that a − {aN} is represented by
{an − aN}n∈N

|a − aN | = lim
n→+∞

|an − aN |

and |an − aN | < ε′ for any n ≥ N. Thus,

|a − aN | = lim
n→+∞

|an − aN | < ε′ < ε

Proposition 2.6. K̂ is complete with respect to | |.

Sketch of the Proof. (i) a1, a2, . . . Cauchy sequence of elements of K̂. Since K ↪→ K̂ is dense we know
that there exist a(1), a(2), . . . ∈ K such that

lim
n→+∞

∣∣∣an − a(n)
∣∣∣ = 0

(ii) {a(n)}n∈N is a Cauchy sequence of elements in K and therefore it is an element of K̂, say a

(iii) We can prove that
lim

n→+∞
an = a

2.3 Complete Fields
Theorem 2.7 (Ostrowski). Let K be a field which is complete with respect to an archimedean valuation.
Then there is an isomorphism σ from K onto R or C satisfying

|a| = |σ(a)|s for all a ∈ K

for some fixed s ∈ (0, 1].

We will then restrict our attention to the non-archimedean case

Theorem 2.8. If O ⊆ K,respectively Ô ⊆ K̂,is the valuation ring of ν,respectively of ν̂, and p, respectively
p̂, is the maximal ideal, then one has

Ô/p̂ ' O/p

and,if ν is discrete, one has furthermore
Ô/p̂n ' O/pn

The gist of this section is to show that, in general, many of the features of the p-adics can be easily
generalized to the case of non-archimedean complete fields.

Theorem 2.9. Let R ⊆ O be a system of representatives for κ = O/p such that 0 ∈ R, and let π ∈ O be
a prime element . Then every x 6= 0 in K admits a unique representation as a convergent series

x = πm(a0 + a1π + a2π
2 + . . .)

where ai ∈ R, a0 6= 0 and m ∈ Z.
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Example. In Qp we have R = 0, . . . , p − 1 and we have seen that we can write

x = pm(a0 + a1p + a2p
2 + . . .)

Example. In the case of the rational function field k(X) and the valuation attached to the prime ideal
p = (X − a) we may take as a system of representatives the field k itself and the completion turns out to
be the ring f formal power series k((X)) consisting of Laurent series expansions

f (X) = (X − a)m(a0 + a1(X − a) + a2(X − a)2 + . . .)

Theorem 2.10. The canonical mapping O → lim
←
O/pn is an isomorphism and an homeomorphism.

The goal of the talk will be to study field extensions of a complete non-archimedean field. This means
that we have to turn to the question of factoring algebraic equations.

Let K again be a field which is complete with respect to a non-archimedean valuation ν. Let O be the
corresponding valuation ring with maximal ideal p and residue class field κ = O/p.

We call a polynomial f (x) = a0 + a1x + . . .+ anx
n ∈ O[x ] primitive if f (x) 6≡ 0 mod p and

|f | = max{|a0| , . . . , |an|} = 1

Theorem 2.11 (Hensel’s Lemma). If a primitive polynomial f (x) ∈ O[x ] admits modulo p a factorization

f (x) ≡ ḡ(x)(̄x) mod p

into relatively prime polynomials ḡ, h̄ ∈ κ[x ], then f (x) admits a factorization

f (x) = g(x)h(x)

into polynomials g, h ∈ O[x ] such that deg(g) = deg(ḡ) and g(x) ≡ ḡ(x) mod p and h(x) ≡ h̄(x) mod p.

Corollary 2.12. Let the field K be complete with respect to the non-archimedean valuation | |. Then, for
every irreducible polynomial f (x) = a0 + a1x + . . .+ anx

n ∈ K[x ] such that a0an 6= 0, one has

|f | = max{|a0| , |an|}

In particular, an = 1 and a0 ∈ O imply that f ∈ O[x ].

Theorem 2.13. Let K be complete with respect to the valuation | |. Then | | may be extended in a unique
way to a valuation of any given algebraic extension L of K. This extension is given by

|a| = n

√∣∣NL/K(a)
∣∣

when L/K has finite degree n. In this case L is again complete.

Sketch of the proof. Firs of all if | | is archimedean then K = R or C and the result is known.
Therefore we reduce to the non-archimedean case. Since every algebraic extension L/K is union of its

finite sub-extensions we assume that [L : K] = n is finite.

L

K

OL

OK

= integral closure of OK

= valuation ring of | |

EXISTENCE It suffices to show that the formula |a| = n

√∣∣NL/K(a)
∣∣ defines a valuation. Clearly |a| = 0⇔

a = 0 and |ab| = |a| |b| hold. The strong triangle inequality comes from the fact that OL = {α ∈
L | NL/K(α) ∈ OK}.
Obviously this valuation has OL as valuation ring.
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UNIQUENESS Let |a|′ another valuation with O′L its valuation ring. Let P and P ′ be the maximal ideals
of OL and O′L. We show that OL ⊆ O′L.
Let α ∈ OL \ O′L and let f (x) = xd + . . . + a1x + a0 be the minimal polynomial of α over K. Then
a0, . . . , ad−1 ∈ OK and α−1 ∈ P ′ hence

1 = −
(
ad−1α

−1 + . . .+ a1(α
−1)d−1 + a0(α

−1)d
)
∈ P ′

which is a contradiction.

Thus OL ⊆ O′L =⇒ |α| ≤ 1 implies |α|′ ≤ 1 =⇒ the two valuation are equivalent but, since they
coincide on K, they are equal.

3 Analysis in Qp
In this section we will see some properties of sequences and series in Qp. Recall from the previous section
that Qp is a complete metric space. Hence every Cauchy sequence converges and therefore the set of the
convergent sequences is the set of the Cauchy sequences. We will also see that we have some much better
properties in Qp, than we are used to in the real case. The first example is the characterization of the
Cauchy sequences.

Theorem 3.1. A sequence {an}n∈N in Qp is a Cauchy sequence (i.e. converges), if and only if

lim
n→+∞

|an+1 − an|p = 0

This is obviously not true in R. For example take an =
∑n

k=1
1
n the n-th harmonic number. Then

lim
n→+∞

|an+1 − an| = lim
n→+∞

1
n+1 = 0 but as we know the {an} is not Cauchy.

Definition. Let the series
∑+∞

n=0 an be in Qp. The sum converges if the sequence of its partial sums converges
in Qp, i.e.,

lim
n→+∞

|SN+1 − SN |p = 0 where SN =

N∑

n=0

an

The sum converges absolutely if
∑+∞

n=0 |an|p converges in R.

As we are used to in R, convergence follows from absolute convergence by the triangle inequality.

Proposition 3.2. If the series
∑+∞

n=0 |an|p converges absolutely (in R), then
∑+∞

n=0 an converges in Qp.

Proposition 3.3. A series
∑+∞

n=0 an in Qp converges in Qp if and only if lim
n→+∞

an = 0 and in this case

∣∣∣∣∣
+∞∑

n=0

an

∣∣∣∣∣
p

≤ max
n∈N
|an|p

4 Extensions
In this chapter we discuss the question whether, and in how many ways, a valuation ν of a field K can be
extended to another field L containing K.

For a complete field K and an algebraic extension L/K we have shown in Section 2 that this extension
is unique.

Notation. We denote K the base field with valuation ν. Kν will be its completion with respect to ν and
K̄ν will be the algebraic closure of Kν . The canonical extension of ν to Kν will be again denoted as ν while
its unique extension to K̄ν will be ν̄.
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Let L/K be an algebraic extension. Choosing a K-embedding τ : L→ K̄ν we obtain by restriction of ν̄
to τ(L) an extension ω = ν̄ ◦ τ of the valuation ν to L

The mapping τ : L → K is obviously continuous with respect to this valuation. It extends in a unique
way to a continuous K-embedding

τ : Lω → K̄ν

where, in the case of an infinite extension L/K, Lω does not mean the completion of L with respect to ω,
but the union L =

⋃
i L
(i)
ω of the completions L(i)ω of all the finite sub-extensions L(i) of L/K. This union

will be called the localization of L with respect to ω.

K

Kν

L

Lω

The canonical extension of the valuation ω from L to Lω, is precisely the unique extension of the valuation
ν from Kν to the extension Lω/Kν . We have

Lω = LKν

We saw that every K-embedding τ : L→ K̄ν gave us an extension ω = ν̄ ◦τ ◦ν. For every automorphism
σ ∈ Gal(K̄ν |Kν), we obtain with the composite

L
τ−−−→ K̄ν

σ−−−→ K̄ν

a new K-embedding τ ′.It will be said to be conjugate to τ over Kν.

Theorem 4.1. Let L/K be an algebraic field extension and ν a valuation of K. Then one has:

(i) Every extension ω of the valuation ν arises as the composite ω = ν̄◦τ for some K-embedding τ : L→ K.

(ii) Two extensions ν̄ ◦ τ and ν̄ ◦ τ ′ are equal if and only if τ and τ ′ are conjugate over K.

Let L = K(α) be generated by the zero of an irreducible polynomial f (x) ∈ K[x ] and let

f (x) = f1(x)m1 · . . . · fr (x)mr

be the decomposition of f (x) into irreducible factors over the completion Kν The K-embeddings τ : L→ K̄ν
are given by the zeroes β of f (x) which lie in K̄ν : τ(α) = β

Theorem 4.2. Suppose the extension L/K is generated by α as above Then the valuations ω1, . . . , ωr
extending ν to L corresponds one-to-one to the irreducible factors f1, . . . , fr in the decomposition of f (x)

over the completion Kν .

Let L/K be again an arbitrary finite extension. We will write ω|ν to indicate that ω is an extension of
ν. The inclusions L ↪→ Lω induce homomorphisms L ⊗K Kν → Lω via a ⊗ b → ab and hence a canonical
homomorphism

ϕ : L⊗K Kν −→
∏

ω|ν

Lω

Proposition 4.3. If L/K is separable then L⊗K Kν '
∏
ω|ν Lω. Further

[L : K] =
∑

ω|ν

[Lω : Kν ]

NL/K(α) =
∏

ω|ν

NLω/Kν (α)

TrL/K(α) =
∑

ω|ν

TrLω/Kν (α)
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If ν is a non-archimedean valuation, we define the ramification index of an extension ω|ν by

eω =
(
ω(L×) : ν(K×)

)

and the inertia degree by
fω = [λω : κ]

where λωω is the residue field of ω. One obtain

Proposition 4.4. It holds
[L : K] =

∑

ω|ν

eωfω
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