Iwasawa Algebras and p-adic Measures

Leonardo Colò

October 11th, 2016

1 Iwasawa Algebras

First of all we want to recall some definitions and to fix the notation. We will write \mathcal{G} to indicate the Galois Group of the extension $\mathbb{Q}(\mu_{p^{\infty}})$ over \mathbb{Q} :

$$\mathcal{G} = Gal(\mathbb{Q}(\mu_{p^{\infty}})/\mathbb{Q})$$

The Iwasawa algebra will play a fundamental role in this seminar: in general, let \mathfrak{G} be a profinite abelian group. This means that \mathfrak{G} is a topological group which is obtained as the projective limit of a discrete collection of finite groups, each given the discrete topology.

$$\mathfrak{G} = \lim \mathfrak{F}_n$$

where (\mathfrak{F}_n, π_n) is a projective system and \mathfrak{F}_n is a finite topological group for all n. The topology on \mathfrak{G} is the topology originated by the projections

$$p_n:\mathfrak{G}\to\mathfrak{F}_n$$

A basis for the topology is the set of all the preimages of open subsets in \mathfrak{F}_n with respect to p_n .

A neighbourhood basis for 0 is given by the set of $\ker(p_n)$. Let $\mathcal{T}_{\mathfrak{G}}$ be the set of all open subgroups of \mathfrak{G} .

Theorem. A topological group is profinite if and only if it is Hausdorff, compact, and totally disconnected.

We recall that a topological space is totally disconnected if the only (nonempty) connected subsets are one-point subsets, or equivalently, if for any two points there is an open and closed subset containing one but not the other.

Proposition. Let \mathfrak{G} be a compact group, and $\mathfrak{H} \subseteq \mathfrak{G}$ a subgroup. Then \mathfrak{H} is open if and only if \mathfrak{H} is closed and of finite index.

Proof. Suppose \mathfrak{H} is open. Then \mathfrak{H} has finite index, since \mathfrak{G} is compact and every coset of an open subgroup is open. \mathfrak{H} is then also closed, since its complement is a union of cosets, each of which is open. Conversely, if \mathfrak{H} is closed and has finite index, then its complement is a finite union of closed cosets, and hence closed, so \mathfrak{H} is open.

Corollary. Let \mathfrak{G} be a profinite group, and $\mathfrak{H} \subseteq \mathfrak{G}$ a subgroup. Then \mathfrak{H} is open if and only if \mathfrak{H} is closed and has finite index.

We conclude that every element in $\mathcal{T}_{\mathfrak{G}}$ has finite index in \mathfrak{G} . This means that for all \mathfrak{H} open subgroup of \mathfrak{G} , the quotient $\mathfrak{G}/\mathfrak{H}$ is a finite group.

Definition. Given a profinite abelian group \mathfrak{G} , we define the Iwasawa algebra to be

$$\Lambda(\mathfrak{G}) = \lim \mathbb{Z}_p[\mathfrak{G}/\mathfrak{H}]$$

where \mathfrak{H} runs over $\mathcal{T}_{\mathfrak{G}}$, and $\mathbb{Z}_p[\mathfrak{G}/\mathfrak{H}]$ denotes the ordinary group ring over \mathbb{Z}_p .

The topology on $\Lambda(\mathfrak{G})$ is given by the projection maps

$$\pi_{\mathfrak{H}}: \Lambda(\mathfrak{G}) = \lim_{\leftarrow} \mathbb{Z}_p[\mathfrak{G}/\mathfrak{H}] \to \mathbb{Z}_p[\mathfrak{G}/\mathfrak{H}]$$

Hence the open subsets of $\Lambda(\mathfrak{G})$ are the preimages of open subsets in $\mathbb{Z}_p[\mathfrak{G}/\mathfrak{H}]$. Lemma. For all $\mathcal{U} \in \mathcal{T}_{\mathfrak{G}}$, we can write \mathcal{U} ha a disjoint union:

$$\mathcal{U} = \prod_{i=1}^{n} (q_i + \mathfrak{H})$$

Where q_i are representants of the elements of \mathcal{U}/\mathfrak{H} .

Example. We know that $\frac{p\mathbb{Z}_p}{p^2\mathbb{Z}_p} \simeq \frac{\mathbb{Z}}{p\mathbb{Z}}$

$$1+p\mathbb{Z}_p = (1+p^2\mathbb{Z}_p) + ((1+p)+p^2\mathbb{Z}_p) + ((1+2p)+p^2\mathbb{Z}_p) + \ldots + ((1+(p-1)p)+p^2\mathbb{Z}_p)$$

We obtain

$$(1 + p\mathbb{Z}_p) = \prod_{n=0}^{p-1} ((1 + np) + p^2 \mathbb{Z}_p)$$

we recall that

$$(1 + p\mathbb{Z}_p) = \{x \in \mathbb{Z}_p \mid \nu(x - 1) \ge 1\}$$

And so we have the following representation:

The small open disks cover the big disk and they are disjoint.

Recall. If we have two disks $D_1; D_2$ in \mathbb{Q}_p we only have two possibilities:

- $D_1 \cap D_2 = \emptyset$
- $D_1 \subset D_2$ or $D_2 \subset D_1$

The main goal of this work is to build a bijection

$$\begin{array}{c} \Lambda(\mathfrak{G}) \longleftrightarrow Meas(\mathfrak{G}, \mathbb{Z}_p) \\ \lambda \longleftrightarrow \mu_{\lambda} \end{array}$$

associating to every element of the Iwasawa algebra a p-adic measure valued in \mathbb{Z}_p .

Definition. A *p*-adic distribution is a map

$$\mu: \mathcal{T} = \{ open \ and \ compact \ subsets \ of \ \Lambda(\mathfrak{G}) \} \to \mathbb{C}_p$$

which is additive. This means that if we consider a disjoint family $\{\mathcal{U}_n\}_{n=1}^N$ of elements of \mathcal{T} , where $\mathcal{U}_n \cap \mathcal{U}_m = \emptyset$ for all $n \neq m$, then

$$\mu(\prod_{n=1}^{N} \mathcal{U}_n) = \sum_{n=1}^{N} \mu(\mathcal{U}_n)$$

Definition. A p-adic measure is a bounded p-adic distribution.

A p-adic distribution is bounded if there exists $B \in \mathbb{R}$ such that $||\mu(\mathcal{U})|| < B$ for all \mathcal{U} . Equivalently, working with the p-adic valuation, if there exists $C \in \mathbb{R}$ such that $|\mu(\mathcal{U})|_p > C$ for all \mathcal{U} .

Remark. If our measure takes values in \mathbb{Z}_p we do not need the condition $||\mu(\mathcal{U})|| < B$ for all \mathcal{U} since $|x|_p \leq 1$ for all $x \in \mathbb{Z}_p$.

Let \mathbb{C}_p be the completion of the algebraic closure of the field of p-adic numbers \mathbb{Q}_p , and write $|\cdot|_p$ for its p-adic norm.

Definition. We write $\mathscr{C}(\mathfrak{G}, \mathbb{C}_p) = \{Continuous functions from \mathfrak{G} to \mathbb{C}_p\}$ for the \mathbb{C}_p -algebra of continuous functions from \mathfrak{G} to \mathbb{C}_p .

We can define a norm on $\mathscr{C}(\mathfrak{G}, \mathbb{C}_p)$ by

$$||f|| = \sup_{g \in \mathfrak{G}} |f(g)|_p$$

Observation. ||f|| is well defined as $\sup_{g \in \mathfrak{G}} |f(g)|_p$ is finite: indeed, \mathfrak{G} is compact and so f is bounded $\Longrightarrow \sup_{g \in \mathfrak{G}} |f(g)|_p$ is bounded.

This norm makes $\mathscr{C}(\mathfrak{G}, \mathbb{C}_p)$ into a \mathbb{C}_p Banach space.

Definition. A function $f : \mathfrak{G} \to \mathbb{C}_p$ is said to be locally constant if, for all $a \in \mathfrak{G}$, there exist an open subgroup $\mathfrak{H} \subseteq \mathfrak{G}$ such that $f_{|a+\mathfrak{H}|}$ is constant, i.e. $f(a+\mathfrak{h}) = f(a)$, for all $\mathfrak{h} \in \mathfrak{H}$

In other words, a function f in $\mathscr{C}(\mathfrak{G}, \mathbb{C}_p)$ is defined to be locally constant if there exists an open subgroup \mathfrak{H} of \mathfrak{G} such that f is constant modulo \mathfrak{H} , i.e. gives a function from $\mathfrak{G}/\mathfrak{H}$ to \mathbb{C}_p .

Definition. We write $Step(\mathfrak{G})$ for the sub-algebra of locally constant functions.

Let f be constant modulo \mathfrak{H} .

$$\mathfrak{B} = (a_1 + \mathfrak{H}) \amalg \ldots \amalg (a_n + \mathfrak{H})$$

with a_i representants of $\mathfrak{G}/\mathfrak{H}$. Then we can write

$$f = \sum_{i=1}^{n} \alpha_i \chi_{a_i + \mathfrak{H}} \qquad \alpha_i \in \mathbb{C}_p$$

 \mathfrak{H} is an open and compact set $\Longrightarrow \mathfrak{H}$ is open and closed $\Longrightarrow \chi_{a_i + \mathfrak{H}}$ is continuous.

We have the following lemma:

Lemma. Step(\mathfrak{G}) is dense in $\mathscr{C}(\mathfrak{G}, \mathbb{C}_p)$.

Proof. $Step(\mathfrak{G}) \subseteq \mathscr{C}(\mathfrak{G}, \mathbb{C}_p)$ and $||f|| = \sup_{\mathfrak{g} \in \mathfrak{G}} |f(\mathfrak{g})|$. Let $f \in \mathscr{C}(\mathfrak{G}, \mathbb{C}_p)$; $f : \mathfrak{G} \to \mathbb{C}_p$. Since \mathfrak{G} is compact, we have that f is uniformly continuous:

 $\forall \epsilon > 0, \ \exists \mathfrak{H}_{\epsilon} \subseteq \mathfrak{G} \ open \ subset \ such \ that \ \forall x, y \in \mathfrak{G} \ with \ x-y \in \mathfrak{H}_{\epsilon} \Rightarrow |f(x) - f(y)| < \epsilon$

Let $\mathfrak{G}/\mathfrak{H}_{\epsilon} = \{a_1; \ldots; a_n\}$. We set

$$g = \sum_{i=1}^{n} f(a_i) \chi_{a_i + \mathfrak{H}_{\epsilon}} \in Step(\mathfrak{G})$$

For all $x \in \mathfrak{G}$ there exists i_0 such that $x \in a_{i_0} + \mathfrak{H}_{\epsilon}$.

$$|f(x) - g(x)| = |f(x) - f(a_{i_0})| < \epsilon$$

since $x - a_{i_0} \in \mathfrak{H}_{\epsilon}$ and f is uniformly continuous. Hence

$$||f(x) - g(x)|| = \sup_{x \in \mathfrak{G}} |f(x) - g(x)| \le \epsilon$$

We conclude that $Step(\mathfrak{G})$ is dense in $\mathscr{C}(\mathfrak{G}, \mathbb{C}_p)$.

Definition. If $f = \sum_{i=1}^{n} \alpha_i \chi_{a_i + \mathfrak{H}} \in Step(\mathfrak{G})$ we set

$$\int_{\mathfrak{G}} f d\mu = \sum_{i=1}^{n} \alpha_i \mu(a_i + \mathfrak{H})$$

Lemma. The definition above is independent on the choice of \mathfrak{H} .

Since $Step(\mathfrak{G})$ si dense in $\mathscr{C}(\mathfrak{G}, \mathbb{C}_p)$, then for all f continuous function we have a sequence $\{h_n\}_{n\in\mathbb{N}}$ of locally constant functions converging to f.

Definition. We set

$$\int_{\mathfrak{G}} f d\mu = \lim_{n \to \infty} \int_{\mathfrak{G}} h_n d\mu$$

This is a good definition since we have the following

Theorem. Let $\{g_n\}_{n\in\mathbb{N}}$ be a sequence of locally constant functions such that

$$\lim_{n \to \infty} g_n = f$$

then we have

- i. The sequence $\{\int_{\mathfrak{G}} g_n d\mu\}_{n \in \mathbb{N}}$ is Cauchy.
- ii. The quantity

$$\lim_{n \to \infty} \int_{\mathfrak{G}} g_n d\mu$$

does not depends on the choice of $\{g_n\}_{n\in\mathbb{N}}$ but only on f.

Proof. i. $\lim_{n \to \infty} g_n = f$ and $\{g_n\}_{n \in \mathbb{N}}$ is Cauchy. Then $(g_{n+1} - g_n) \to 0$ as $n \to \infty$ and $||g_{n+1} - g_n|| \to 0$ as $n \to \infty$.

$$\int_{\mathfrak{G}} (g_{n+1} - g_n) d\mu = \int_{\mathfrak{G}} g_{n+1} d\mu - \int_{\mathfrak{G}} g_n d\mu$$
$$|\int_{\mathfrak{G}} (g_{n+1} - g_n) d\mu| \le ||g_{n+1} - g_n|| \cdot ||\mu||$$

where $||\mu|| = \sup_{\mathcal{U}} |\mu(\mathcal{U})|$. Since $||\mu||$ is bounded and $||g_{n+1} - g_n|| \to 0$ we have

$$|\int_{\mathfrak{G}} (g_{n+1} - g_n) d\mu| = |\int_{\mathfrak{G}} g_{n+1} d\mu - \int_{\mathfrak{G}} g_n d\mu| \le ||g_{n+1} - g_n|| \cdot ||\mu|| \to 0.$$

ii. Suppose we have $\{g_n\}_{n\in\mathbb{N}}$ and $\{h_n\}_{n\in\mathbb{N}}$ two sequences converging to f.

$$\begin{aligned} |\int_{\mathfrak{G}} h_n d\mu - \int_{\mathfrak{G}} g_n d\mu| &= |\int_{\mathfrak{G}} (h_n - g_n) d\mu| \le ||h_n - g_n||||\mu|| = \\ &= ||h_n - f + f - g_n||||\mu|| \le \max\{||h_n - f||; ||f - g_n||\}||\mu||\end{aligned}$$

but $||h_n - f|| \to 0$ as $n \to \infty$ and $||f - g_n|| \to 0$ as $n \to \infty$. Moreover μ is bounded. So we have

$$|\int_{\mathfrak{G}} h_n d\mu - \int_{\mathfrak{G}} g_n d\mu| \to 0 \quad as \ n \to \infty$$

Definition. We define the convolution product in $Meas(\mathfrak{G}, \mathbb{Z}_p)$ as $\mu_1 * \mu_2$ in this way:

$$\int_{\mathfrak{G}} f(x)d(\mu_1 * \mu_2)(x) = \int_{\mathfrak{G}} (\int_{\mathfrak{G}} f(x+y)d\mu_1(x))d\mu_2(y)$$

With this definition we know the behaviour of $\mu_1 * \mu_2$ on all subsets $A \subset \mathfrak{G}$:

$$\mu_1 * \mu_2(A) = \int_{\mathfrak{G}} \chi_A d(\mu_1 * \mu_2)$$

Theorem. $\Lambda(\mathfrak{G})$ and $Meas(\mathfrak{G}, \mathbb{Z}_p)$ are isomorphic.

Proof. We want to find an isomorphism

$$\Psi: \Lambda(\mathfrak{G}) \to Meas(\mathfrak{G}, \mathbb{Z}_p)$$

Let's consider $\lambda \in \Lambda(\mathfrak{G})$. $\lambda = (\lambda_{\mathfrak{H}})_{\mathfrak{H}}$. We want to find $\mu_{\lambda} \in Meas(\mathfrak{G}, \mathbb{Z}_p)$. We only need to describe what is $\mu_{\lambda}(a + \Gamma)$. Indeed, every compact subset of \mathfrak{G} is union of elements of this form: $a + \Gamma$ where $a \in \mathfrak{G}$ and $\Gamma \subseteq \mathfrak{G}$ is in $\mathcal{T}_{\mathfrak{G}}$.

$$\lambda_{\Gamma} = \sum_{\sigma \in \mathfrak{G}/\Gamma} a_{\sigma} \sigma \qquad \quad a_{\sigma} \in \mathbb{Z}_p$$

Let be $\overline{\gamma} \in \mathfrak{G}/\Gamma$. $\overline{\gamma}$ is one of the σ and $a_{\overline{\gamma}} \in \mathbb{Z}_p$. We set

$$\mu_{\lambda}(\gamma + \Gamma) = a_{\overline{\gamma}}$$

Clearly μ_{λ} is bounded since $a_{\overline{\gamma}}$ si in \mathbb{Z}_p .

We now want to check the additivity of μ : if $\gamma + \Gamma = \coprod_{i=1}^{n} (a_i + \mathfrak{H})$ with $\mathfrak{H} \subseteq \Gamma \subseteq \mathfrak{G}$ and a_i are the representatives of all the elements in $\alpha_i \in \mathfrak{G}/\mathfrak{H}$ such that $\alpha_i = \gamma \mod \Gamma$, then we claim that

$$\mu_{\lambda}(\gamma + \Gamma) = \mu_{\lambda}(\coprod_{i=1}^{n}(a_{1} + \mathfrak{H})) = \sum_{i=1}^{n} \mu_{\lambda}(a_{i} + \mathfrak{H})$$

But this is plain from the compatibility of the family $\lambda = (\lambda_{\Re})_{\Re}$. Indeed, if

$$\lambda_{\Gamma} = \sum_{\sigma \in \mathfrak{G}/\Gamma} a_{\sigma} \sigma \quad and \quad \lambda_{\mathfrak{H}} = \sum_{\tau \in \mathfrak{G}/\mathfrak{H}} b_{\tau} \tau$$

then

$$\begin{split} \mu_{\lambda}(\gamma+\Gamma) &= a_{\sigma_0} \qquad where \ \gamma = \sigma_0 \mod \Gamma \\ \sum_{i=1}^{n} \mu_{\lambda}(a_i + \mathfrak{H}) &= \sum_{i=1}^{n} b_{\tau_i} \qquad where \ a_i = \tau_i \mod \mathfrak{H} \end{split}$$

Since

$$\begin{aligned} \pi : \mathbb{Z}[\mathfrak{G}/\mathfrak{H}] \to \mathbb{Z}[\mathfrak{G}/\Gamma] \\ \lambda_{\mathfrak{H}} \to \lambda_{\Gamma} \\ \sum_{\tau \in \mathfrak{G}/\mathfrak{H}} b_{\tau}\tau \to \sum_{\sigma \in \mathfrak{G}/\Gamma} a_{\sigma}\sigma \end{aligned}$$

then

$$\sum_{\sigma\in\mathfrak{G}/\Gamma}a_{\sigma}\sigma=\pi(\sum_{\tau\in\mathfrak{G}/\mathfrak{H}}b_{\tau}\tau)=\sum_{\sigma\in\mathfrak{G}/\Gamma}(\sum_{\tau\equiv_{\Gamma}\sigma}b_{\tau})\sigma$$

and we conclude that $a_{\sigma_0} = \sum_{\tau \equiv_{\Gamma} \sigma_0} b_{\tau} = \sum_{i=1}^n b_{\tau_i}$. It can be shown that the product in $\Lambda(\mathfrak{G})$ gives the convolution product in

It can be shown that the product in $\Lambda(\mathfrak{G})$ gives the convolution product in $Meas(\mathfrak{G},\mathbb{Z}_p)$ and so Ψ is a \mathbb{Z}_p -algebras homomorphism.

 Ψ is injective since ker $(\Psi) = \{0\}$. Indeed, if $\Psi(\lambda) = 0 \in Meas(\mathfrak{G}, \mathbb{Z}_p)$ then 0(A) = 0 for all $A \subset \mathfrak{G}$. Then every component of λ is 0 and so $\lambda = 0$.

Finally Ψ is surjective: given a measure $\mu \in Meas(\mathfrak{G}, \mathbb{Z}_p)$ then we can construct a sequence $(\lambda_{\mathfrak{H}})_{\mathfrak{H}}$ where $\lambda_{\mathfrak{H}} = \sum_{\sigma \in \mathfrak{G}/\mathfrak{H}} \mu(\sigma + \mathfrak{H})\sigma$. The only thing we have to check is that $(\lambda_{\mathfrak{H}})_{\mathfrak{H}} \in \Lambda(\mathfrak{G})$ i.e. that $(\lambda_{\mathfrak{H}})_{\mathfrak{H}}$ is a compatible system. Suppose we have $\mathfrak{H} \subset \Gamma \subset \mathfrak{G}$ then $\Gamma = \mathrm{II}(a_i + \mathfrak{H})$ then

$$\begin{split} \lambda_{\Gamma} &= \sum_{\sigma \in \mathfrak{G}/\Gamma} \mu(\sigma + \Gamma) \sigma \\ \lambda_{\mathfrak{H}} &= \sum_{\tau \in \mathfrak{G}/\mathfrak{H}} \mu(\tau + \mathfrak{H}) \tau \end{split}$$

Now we use the additivity of the measure μ to prove the compatibility of $(\lambda_{\mathfrak{H}})_{\mathfrak{H}}$

$$\pi(\lambda_{\mathfrak{H}}) = \pi(\sum_{\tau \in \mathfrak{G}/\mathfrak{H}} \mu(\tau + \mathfrak{H})\tau) = \sum_{\sigma \in \mathfrak{G}/\Gamma} (\sum_{\tau \equiv_{\Gamma}\sigma} \mu(\tau + \mathfrak{H}))\sigma =$$
$$= \sum_{\sigma \in \mathfrak{G}/\Gamma} \mu(\prod_{\tau \equiv_{\Gamma}\sigma} (\tau + \mathfrak{H}))\sigma = \sum_{\sigma \in \mathfrak{G}/\Gamma} \mu(\sigma + \Gamma)\sigma = \lambda_{\Gamma}$$

The isomorphism we built allows us to speak about integration of continuous functions against an element $\lambda \in \Lambda(\mathfrak{G})$: setting $\lambda = (\lambda_{\mathfrak{K}})_{\mathfrak{K}} = (\sum_{x \in \mathfrak{B}/\mathfrak{K}} c_{\mathfrak{K}}(x)x)$ with $c_{\mathfrak{H}}(x) \in \mathbb{Z}_p$, we define the integral of a function f locally constant on \mathfrak{H} as

$$\int_{\mathfrak{G}} f d\lambda = \sum_{x \in \mathfrak{B}/\mathfrak{H}} f(x) c_{\mathfrak{H}}(x)$$

Observation. Since the $c_{\mathfrak{H}}$ lie in \mathbb{Z}_p we have

$$|\int_{\mathfrak{G}} f d\lambda|_p \le ||f||$$

Indeed $|\int_{\mathfrak{G}} f d\lambda|_p = |\sum_{x \in \mathfrak{B}/\mathfrak{H}} f(x)c_{\mathfrak{H}}(x)| \le \max\{|f(x)c_{\mathfrak{H}}(x)|\}$ and, since $c_{\mathfrak{H}}(x) \in \mathbb{Z}_p$, then $|c_{\mathfrak{H}}(x)| \le 1$. We conclude that

$$|\int_{\mathfrak{G}} f d\lambda|_p \le \max\{|f(x)| \cdot |c_{\mathfrak{H}}(x)|\} \le ||f|| \cdot 1 = ||f||$$

If f is any continuous function and $\{f_n\}_{n\in\mathbb{N}}$ is a sequence converging to f, then

$$\int_{\mathfrak{G}} f d\lambda = \lim_{n \to \infty} \int_{\mathfrak{G}} f_n d\lambda$$

We have a linear functional

$$\begin{split} M_{\lambda} : \mathscr{C}(\mathfrak{G}, \mathbb{C}_p) \longrightarrow \mathbb{C}_p \\ f \longrightarrow \int_{\mathfrak{G}} f d\lambda \end{split}$$

satisfying $|M_{\lambda}(f)| \leq ||f||$.

It is clear that if $M_{\lambda_1} = M_{\lambda_2}$, then $\lambda_1 = \lambda_2$. Finally, $M_{\lambda}(f)$ belongs to \mathbb{Q}_p when f takes values in \mathbb{Q}_p . Conversely we have the following lemma

Lemma. Every linear functional \mathcal{L} on $\mathscr{C}(\mathfrak{G}, \mathbb{C}_p)$ satisfying $|\mathcal{L}(f)|_p \leq ||f||$ for all continuous functions f and $\mathcal{L}(f)$ belongs to \mathbb{Q}_p when f takes values in \mathbb{Q}_p , is of the form $\mathcal{L} = M_\lambda$ for a unique λ in $\Lambda(\mathfrak{G})$.

Proof. The element λ can be obtained as follows. For each open subgroup \mathfrak{H} of \mathfrak{G} , and each coset x of $\mathfrak{G}/\mathfrak{H}$, we put $c_{\mathfrak{H}}(x) = \mathcal{L}(\chi_x)$ where χ_x is the characteristic function of x, and then define $\lambda_{\mathfrak{H}}$ by the formula $\lambda_{\mathfrak{H}} = \sum_{\sigma \in \mathfrak{G}/\mathfrak{H}} c_{\mathfrak{H}}(\sigma)\sigma$. These elements $\lambda_{\mathfrak{H}}$ are clearly compatible and so give an element in $\Lambda(\mathfrak{G})$.

Observation. If $\lambda = g$ in \mathfrak{G} , then dg is the Dirac measure given by

$$\int_{\mathfrak{G}} f dg = f(g)$$

Observation. The product in $\Lambda(\mathfrak{G})$ corresponds to the convolution of measures which we recall is defined by

$$\int_{\mathfrak{G}} f(x)d(\lambda_1 * \lambda_2)(x) = \int_{\mathfrak{G}} (\int_{\mathfrak{G}} f(x+y)d\lambda_1(x))d\lambda_2(y)$$

Observation. If $\nu : \mathfrak{G} \to \mathbb{C}_p$ is a continuous group homomorphism, then one sees easily that we can extend ν to a continuous algebra homomorphism,

$$\nu: \Lambda(\mathfrak{G}) \to \mathbb{C}_p$$

by the formula $\nu(\lambda) = \int_{\mathfrak{G}} \nu d\lambda$.

Observation. To take account of the fact that the *p*-adic analogue of the complex Riemann zeta function also has a pole, we now introduce the notion of a *p*-adic pseudo-measure on \mathfrak{G} . Let $\mathcal{Q}(\mathfrak{G})$ be the total ring of fractions of $\Lambda(\mathfrak{G})$, i.e. the set of all quotients α/β with α and β in $\Lambda(\mathfrak{G})$ and β a non-zero divisor. We say that an element λ of $\mathcal{Q}(\mathfrak{G})$ is a pseudo-measure on \mathfrak{G} if $(g-1)\lambda$ is in $\Lambda(\mathfrak{G})$ for all *g* in \mathfrak{G} .

Suppose that λ is a pseudo-measure on \mathfrak{G} and let ν be a homomorphism from \mathfrak{G} to \mathbb{C}_p which is not identically one. We can then define

$$\int_{\mathfrak{G}} \nu d\lambda = \frac{\int_{\mathfrak{G}} \nu d((g-1)\lambda)}{\nu(g) - 1}$$

where g is any element of \mathfrak{G} with $\nu(g) \neq 1$. This is independent of the choice of g because, as remarked earlier ν extends to a ring homomorphism from $\Lambda(\mathfrak{G})$ to \mathbb{C}_p .

2 Mahler transform

We now specialize our argument for the Iwasawa algebra of \mathbb{Z}_p . Let be $R = \mathbb{Z}_p[\![T]\!]$ the ring of formal power series.

Definition. As usual we define

$$\binom{x}{n} = \begin{cases} 1 & n = 0\\ \frac{x \cdot (x-1) \cdot \dots \cdot (x-n+1)}{n!} & otherwise \end{cases}$$

Theorem. The functions

$$\begin{pmatrix} x \\ 0 \end{pmatrix} , \begin{pmatrix} x \\ 1 \end{pmatrix} , \begin{pmatrix} x \\ 2 \end{pmatrix} , \begin{pmatrix} x \\ 3 \end{pmatrix} , \dots$$

form an orthonormal basis (Mahler basis) of $\mathscr{C}(\mathbb{Z}_p, \mathbb{C}_p)$.

Theorem (Mahler). Let $f : \mathbb{Z}_p \to \mathbb{C}_p$ be any continuous function. Then f can be written uniquely in the form:

$$f(x) = \sum_{n=0}^{\infty} a_n \binom{x}{n}$$

where $a_n \in \mathbb{C}_p$ tends to 0 as $n \to \infty$.

Proof. We take

$$a_n(f) = \sum_{k=0}^n (-1)^{n-k} \binom{n}{k} f(k)$$

The idea of the proof is very easy. It is clear that

$$f(n) = \sum_{k=0}^{n} a_k(f) \binom{n}{k}$$

If we show that $\lim_{n \to \infty} |a_n(f)|_p = 0$ then the series

$$\sum_{k=0}^{\infty} a_k(f) \binom{x}{k}$$

converges uniformly and, since f is continous, its sum is f(x) in view of the relation for f(n) and the fact that non-negative integers are dense in \mathbb{Z}_p . A complete proof can be found in

[A Simple Proof of Mahlers Theorem on Approximation of Continuous Functions of a p – adic Variable by Polynomials – R. Bojanic]

Note that the coefficients a_n are given by $a_n = (\nabla^n f)(0)$ where

$$\nabla f(x) = f(x+1) - f(x)$$

Lemma. $|\binom{x}{n}| \leq 1$ for all $x \in \mathbb{Z}_p$ and $n \in \mathbb{Z}$.

Proof. For any $x \in \mathbb{Z}_p$ we can choose $y \in \mathbb{Z}$ such that

$$|\frac{x-y}{n!}|_p \le 1$$

The existence of such a y is given by the density of \mathbb{Z} in \mathbb{Z}_p . For $k = 0, 1, 2, \ldots, n$, $\binom{y}{n-k}$ is a positive integer. Hence

$$|\binom{y}{n-k}|_p \le 1$$

Further $\binom{x-y}{0} = 1$ and

$$\binom{x-y}{k} = \frac{(x-y)(x-y-1)\dots(x-y-k+1)}{k!} = \frac{x-y}{n!}\lambda_k$$

where λ_k is a p-adic integer. Therefore

$$|\binom{x-y}{k}|_p \le 1$$

The identity (Vandermonde Convolution)

$$\binom{x}{n} = \sum_{k=0}^{n} \binom{x-y}{k} \binom{y}{n-k}$$

implies

$$|\binom{x}{n}|_p \le 1 \Longrightarrow \binom{x}{n} \in \mathbb{Z}_p$$

Since $|\binom{x}{n}|_p \leq 1$ for all x in \mathbb{Z}_p , it follows that $||f|| = \sup |a_n|_p$. If λ is any element of $\Lambda(\mathbb{Z}_p)$, it follows from that

$$c_n(\lambda) = \int_{\mathbb{Z}_p} {\binom{x}{n}} d\lambda \qquad (n \ge 0)$$

lies in \mathbb{Z}_p . This leads to the following definition.

Definition. We define the Mahler transform $\mathcal{M} : \Lambda(\mathbb{Z}_p) \to R$ by

$$\mathcal{M}(\lambda) = \sum_{n=0}^{\infty} c_n(\lambda) T^n$$

for $\lambda \in \Lambda(\mathbb{Z}_p)$.

Theorem. The Mahler transform is an isomorphism of \mathbb{Z}_p -algebras.

Proof. It is clear from the previous theorem that \mathcal{M} is injective, and is a \mathbb{Z}_p module homomorphism. To see that it is bijective, we construct an inverse $\Upsilon: R \to \Lambda(\mathbb{Z}_p)$ as follows. Let $g(T) = \sum_{n=0}^{\infty} c_n T^n$ be any element of R. We can then define a linear functional \mathcal{L} on $\mathscr{C}(\mathbb{Z}_p, \mathbb{C}_p)$ by

$$\mathcal{L}(f) = \sum_{n=0}^{\infty} a_n c_n$$

where f has Mahler expansion $f(x) = \sum_{n=0}^{\infty} a_n {x \choose n}$. Of course, the series on the right converges because a_n tends to zero as $n \to \infty$. Since the c_n lie in \mathbb{Z}_p , it is clear that $|\mathcal{L}(f)|_p \leq ||f||$ for all f. Hence there exists λ in $\Lambda(\mathbb{Z}_p)$ such that $\mathcal{L} = M_{\lambda}$, and we define $\Upsilon(g(T)) = \lambda$. It is plain that Υ is an inverse of \mathcal{M} . In fact, it can also be shown that \mathcal{M} preserves products, although we omit the proof here.

Lemma. We have $\mathcal{M}(\mathbb{1}_{\mathbb{Z}_p}) = 1 + T$, and thus $\mathcal{M} : \Lambda(\mathbb{Z}_p) \to R$ is the unique isomorphism of topological \mathbb{Z}_p -algebras which sends the topological generator $\mathbb{1}_{\mathbb{Z}_p}$ of \mathbb{Z}_p to (1+T).

Proof. Take $\lambda = 1_{\mathbb{Z}_p}$. By definition,

$$\mathcal{M}(\lambda) = \sum_{n=0}^{\infty} c_n(\lambda) T^n$$

where

$$c_n(\lambda) = \int_{\mathbb{Z}_p} \binom{x}{n} d\lambda = \binom{1}{n}$$

whence the first assertion is clear. For the second assertion, we note that it is well-known, that for each choice of a topological generator γ of \mathbb{Z}_p , there is a unique topological isomorphism of \mathbb{Z}_p -algebras, which maps γ to (1 + T).

Lemma. For all g in R, and all integers $k \ge 0$, we have the integral

$$\int_{\mathbb{Z}_p} x^k d(\Upsilon(g(T))) = (D^k g(T))_{T=0}$$

where $D = (1+T)\frac{d}{dT}$.

Proof. For fixed $g(T) = \sum_{n=0}^{\infty} c_n T^n$ in R, consider the linear functional \mathcal{L} on $\mathscr{C}(\mathbb{Z}_p, \mathbb{C}_p)$ defined by

$$\mathcal{L}(f) = \int_{\mathbb{Z}_p} x f(x) d\Upsilon(g(T))$$

Clearly, we have $|\mathcal{L}(f)|_p \leq ||f||$, and so $\mathcal{L} = M_{\lambda}$ for some $\lambda \in \Lambda(\mathbb{Z}_p)$, whence we obtain

$$\int_{\mathbb{Z}_p} x f(x) d\Upsilon(g(T)) = \int_{\mathbb{Z}_p} f(x) d\lambda$$

We first claim that

$$\mathcal{M}(\lambda) = Dg(T)$$

To prove this, we note that

$$Dg(T) = \sum_{n=0}^{\infty} (nc_n + (n+1)c_{n+1})T^n$$

On the other hand, by definition, $\mathcal{M}(\lambda) = \sum_{n=0}^{\infty} e_n T^n$, where

$$e_n = \int_{\mathbb{Z}_p} x \binom{x}{n} d\Upsilon(g(T))$$

But we have the identity

$$x\binom{x}{n} = (n+1)\binom{x}{n+1} + n\binom{x}{n} \qquad (n \ge 0)$$

whence we get $e_n = nc_n + (n+1)c_{n+1}$ for all $n \ge 0$, thereby proving that $\mathcal{M}(\lambda) = Dg(T)$. But for all $h(T) \in R$ we have

But, for all $h(T) \in R$, we have

$$\int_{\mathbb{Z}_p} d\Upsilon(h(T)) = h(0)$$

Indeed, $\Upsilon(h(T)) = \lambda \in \Lambda(\mathbb{Z}_p)$ such that, if

$$f(x) = \sum_{n=0}^{\infty} \alpha_n {\binom{x}{n}}$$
 and $h(T) = \sum_{n=0}^{\infty} \beta_n T^n$

then

$$\int_{\mathbb{Z}_p} f(x) d\lambda = \sum_{n=0}^{\infty} \alpha_n \beta_n$$

Hence, if f = 1 then $f = \sum_{n=0}^{\infty} \delta_{0,n} {x \choose n}$ and so

$$\int_{\mathbb{Z}_p} 1 \ d(\Upsilon(h(T))) = \sum_{n=0}^{\infty} \delta_{0,n} \beta_n = \beta_0 = h(0)$$

So the assertion of the lemma is equivalent to

$$\int_{\mathbb{Z}_p} x^k d(\Upsilon(g(T))) = \int_{\mathbb{Z}_p} d\Upsilon(D^k g(T)) \qquad (k \ge 0)$$

By an induction argument, we have

$$\int_{\mathbb{Z}_p} d\Upsilon(D^kg(T)) = \int_{\mathbb{Z}_p} x^{k-1} d(\Upsilon(Dg(T)))$$

It is now plain by the fact that $\mathcal{M}(\lambda) = Dg(T)$ and $\int_{\mathbb{Z}_p} xf(x)d\Upsilon(g(T)) = \int_{\mathbb{Z}_p} f(x)d\lambda$ that this is equal to

$$\int_{\mathbb{Z}_p} x^k d\Upsilon(g(T))$$

and the proof of the lemma is complete.