Iwasawa Algebras and p-adic Measures

Leonardo Colò

October 11th, 2016

1 Iwasawa Algebras

First of all we want to recall some definitions and to fix the notation. We will write \mathcal{G} to indicate the Galois Group of the extension $\mathbb{Q}\left(\mu_{p^{\infty}}\right)$ over \mathbb{Q} :

$$
\mathcal{G}=\operatorname{Gal}\left(\mathbb{Q}\left(\mu_{p^{\infty}}\right) / \mathbb{Q}\right)
$$

The Iwasawa algebra will play a fundamental role in this seminar: in general, let \mathfrak{G} be a profinite abelian group. This means that \mathfrak{G} is a topological group which is obtained as the projective limit of a discrete collection of finite groups, each given the discrete topology.

$$
\mathfrak{G}=\lim _{\leftarrow} \mathfrak{F}_{n}
$$

where $\left(\mathfrak{F}_{n}, \pi_{n}\right)$ is a projective system and \mathfrak{F}_{n} is a finite topological group for all n. The topology on \mathfrak{G} is the topology originated by the projections

$$
p_{n}: \mathfrak{G} \rightarrow \mathfrak{F}_{n}
$$

A basis for the topology is the set of all the preimages of open subsets in \mathfrak{F}_{n} with respect to p_{n}.
A neighbourhood basis for 0 is given by the set of $\operatorname{ker}\left(p_{n}\right)$.
Let $\mathcal{T}_{\mathfrak{G}}$ be the set of all open subgroups of \mathfrak{G}.
Theorem. A topological group is profinite if and only if it is Hausdorff, compact, and totally disconnected.

We recall that a topological space is totally disconnected if the only (nonempty) connected subsets are one-point subsets, or equivalently, if for any two points there is an open and closed subset containing one but not the other.

Proposition. Let \mathfrak{G} be a compact group, and $\mathfrak{H} \subseteq \mathfrak{G}$ a subgroup. Then \mathfrak{H} is open if and only if \mathfrak{H} is closed and of finite index.

Proof. Suppose \mathfrak{H} is open. Then \mathfrak{H} has finite index, since \mathfrak{G} is compact and every coset of an open subgroup is open. \mathfrak{H} is then also closed, since its complement is a union of cosets, each of which is open. Conversely, if \mathfrak{H} is closed and has finite index, then its complement is a finite union of closed cosets, and hence closed, so \mathfrak{H} is open.

Corollary. Let \mathfrak{G} be a profinite group, and $\mathfrak{H} \subseteq \mathfrak{G}$ a subgroup. Then \mathfrak{H} is open if and only if \mathfrak{H} is closed and has finite index.

We conclude that every element in $\mathcal{T}_{\mathfrak{G}}$ has finite index in \mathfrak{G}. This means that for all \mathfrak{H} open subgroup of \mathfrak{G}, the quotient $\mathfrak{G} / \mathfrak{H}$ is a finite group.

Definition. Given a profinite abelian group \mathfrak{G}, we define the Iwasawa algebra to be

$$
\Lambda(\mathfrak{G})=\lim _{\leftarrow} \mathbb{Z}_{p}[\mathfrak{G} / \mathfrak{H}]
$$

where \mathfrak{H} runs over $\mathcal{T}_{\mathcal{G}}$, and $\mathbb{Z}_{p}[\mathfrak{G} / \mathfrak{H}]$ denotes the ordinary group ring over \mathbb{Z}_{p}.
The topology on $\Lambda(\mathfrak{G})$ is given by the projection maps

$$
\pi_{\mathfrak{H}}: \Lambda(\mathfrak{G})=\lim _{\leftarrow} \mathbb{Z}_{p}[\mathfrak{G} / \mathfrak{H}] \rightarrow \mathbb{Z}_{p}[\mathfrak{G} / \mathfrak{H}]
$$

Hence the open subsets of $\Lambda(\mathfrak{G})$ are the preimages of open subsets in $\mathbb{Z}_{p}[\mathfrak{G} / \mathfrak{H}]$.
Lemma. For all $\mathcal{U} \in \mathcal{T}_{\mathfrak{G}}$, we can write \mathcal{U} ha a disjoint union:

$$
\mathcal{U}=\coprod_{i=1}^{n}\left(q_{i}+\mathfrak{H}\right)
$$

Where q_{i} are representants of the elements of $\mathcal{U} / \mathfrak{H}$.
Example. We know that $\frac{p \mathbb{Z}_{p}}{p^{2} \mathbb{Z}_{p}} \simeq \frac{\mathbb{Z}}{p \mathbb{Z}}$
$1+p \mathbb{Z}_{p}=\left(1+p^{2} \mathbb{Z}_{p}\right)+\left((1+p)+p^{2} \mathbb{Z}_{p}\right)+\left((1+2 p)+p^{2} \mathbb{Z}_{p}\right)+\ldots+\left((1+(p-1) p)+p^{2} \mathbb{Z}_{p}\right)$
We obtain

$$
\left(1+p \mathbb{Z}_{p}\right)=\coprod_{n=0}^{p-1}\left((1+n p)+p^{2} \mathbb{Z}_{p}\right)
$$

we recall that

$$
\left(1+p \mathbb{Z}_{p}\right)=\left\{x \in \mathbb{Z}_{p} \mid \nu(x-1) \geq 1\right\}
$$

And so we have the following representation:

The small open disks cover the big disk and they are disjoint.
Recall. If we have two disks $D_{1} ; D_{2}$ in \mathbb{Q}_{p} we only have two possibilities:

- $D_{1} \cap D_{2}=\emptyset$
- $D_{1} \subset D_{2}$ or $D_{2} \subset D_{1}$

The main goal of this work is to build a bijection

$$
\begin{aligned}
\Lambda(\mathfrak{G}) & \longleftrightarrow M \operatorname{Meas}\left(\mathfrak{G}, \mathbb{Z}_{p}\right) \\
\lambda & \longleftrightarrow \mu_{\lambda}
\end{aligned}
$$

associating to every element of the Iwasawa algebra a p-adic measure valued in \mathbb{Z}_{p}.
Definition. A p-adic distribution is a map

$$
\mu: \mathcal{T}=\{\text { open and compact subsets of } \Lambda(\mathfrak{G})\} \rightarrow \mathbb{C}_{p}
$$

which is additive. This means that if we consider a disjoint family $\left\{\mathcal{U}_{n}\right\}_{n=1}^{N}$ of elements of \mathcal{T}, where $\mathcal{U}_{n} \cap \mathcal{U}_{m}=\emptyset$ for all $n \neq m$, then

$$
\mu\left(\coprod_{n=1}^{N} \mathcal{U}_{n}\right)=\sum_{n=1}^{N} \mu\left(\mathcal{U}_{n}\right)
$$

Definition. A p-adic measure is a bounded p-adic distribution.
A p-adic distribution is bounded if there exists $B \in \mathbb{R}$ such that $\|\mu(\mathcal{U})\|<B$ for all \mathcal{U}. Equivalently, working with the p-adic valuation, if there exists $C \in \mathbb{R}$ such that $|\mu(\mathcal{U})|_{p}>C$ for all \mathcal{U}.
Remark. If our measure takes values in \mathbb{Z}_{p} we do not need the condition $\|\mu(\mathcal{U})\|<$ B for all \mathcal{U} since $|x|_{p} \leq 1$ for all $x \in \mathbb{Z}_{p}$.

Let \mathbb{C}_{p} be the completion of the algebraic closure of the field of p -adic numbers \mathbb{Q}_{p}, and write $|\cdot|_{p}$ for its p-adic norm.

Definition. We write $\mathscr{C}\left(\mathfrak{G}, \mathbb{C}_{p}\right)=\left\{\right.$ Continuous functions from \mathfrak{G} to $\left.\mathbb{C}_{p}\right\}$ for the \mathbb{C}_{p}-algebra of continuous functions from \mathfrak{G} to \mathbb{C}_{p}.

We can define a norm on $\mathscr{C}\left(\mathfrak{G}, \mathbb{C}_{p}\right)$ by

$$
\|f\|=\sup _{g \in \mathscr{F}}|f(g)|_{p}
$$

Observation. $\|f\|$ is well defined as $\sup _{g \in \mathfrak{G}}|f(g)|_{p}$ is finite: indeed, \mathfrak{G} is compact and so f is bounded $\Longrightarrow \sup _{g \in \mathfrak{G}}|f(g)|_{p}$ is bounded.

This norm makes $\mathscr{C}\left(\mathscr{G}, \mathbb{C}_{p}\right)$ into a \mathbb{C}_{p} Banach space.
Definition. A function $f: \mathfrak{G} \rightarrow \mathbb{C}_{p}$ is said to be locally constant if, for all $a \in \mathfrak{G}$, there exist an open subgroup $\mathfrak{H} \subseteq \mathfrak{G}$ such that $f_{\mid a+\mathfrak{H}}$ is constant, i.e. $f(a+\mathfrak{h})=f(a)$, for all $\mathfrak{h} \in \mathfrak{H}$

In other words, a function f in $\mathscr{C}\left(\mathfrak{G}, \mathbb{C}_{p}\right)$ is defined to be locally constant if there exists an open subgroup \mathfrak{H} of \mathfrak{G} such that f is constant modulo \mathfrak{H}, i.e. gives a function from $\mathfrak{G} / \mathfrak{H}$ to \mathbb{C}_{p}.
Definition. We write Step (\mathfrak{G}) for the sub-algebra of locally constant functions.
Let f be constant modulo \mathfrak{H}.

$$
\mathfrak{G}=\left(a_{1}+\mathfrak{H}\right) \amalg \ldots \amalg\left(a_{n}+\mathfrak{H}\right)
$$

with a_{i} representants of $\mathfrak{G} / \mathfrak{H}$. Then we can write

$$
f=\sum_{i=1}^{n} \alpha_{i} \chi_{a_{i}+\mathfrak{H}} \quad \alpha_{i} \in \mathbb{C}_{p}
$$

\mathfrak{H} is an open and compact set $\Longrightarrow \mathfrak{H}$ is open and closed $\Longrightarrow \chi_{a_{i}+\mathfrak{H}}$ is continuous.

We have the following lemma:
Lemma. $\operatorname{Step}(\mathfrak{G})$ is dense in $\mathscr{C}\left(\mathfrak{G}, \mathbb{C}_{p}\right)$.
Proof. Step $(\mathfrak{G}) \subseteq \mathscr{C}\left(\mathfrak{G}, \mathbb{C}_{p}\right)$ and $\|f\|=\sup _{\mathfrak{g} \in \mathfrak{G}}|f(\mathfrak{g})|$.
Let $f \in \mathscr{C}\left(\mathfrak{G}, \mathbb{C}_{p}\right) ; f: \mathfrak{G} \rightarrow \mathbb{C}_{p}$. Since \mathfrak{G} is compact, we have that f is uniformly continuous:
$\forall \epsilon>0, \exists \mathfrak{H}_{\epsilon} \subseteq \mathfrak{G}$ open subset such that $\forall x, y \in \mathfrak{G}$ with $x-y \in \mathfrak{H}_{\epsilon} \Rightarrow|f(x)-f(y)|<\epsilon$
Let $\mathfrak{G} / \mathfrak{H}_{\epsilon}=\left\{a_{1} ; \ldots ; a_{n}\right\}$. We set

$$
g=\sum_{i=1}^{n} f\left(a_{i}\right) \chi_{a_{i}+\mathfrak{H}_{\epsilon}} \in \operatorname{Step}(\mathfrak{G})
$$

For all $x \in \mathfrak{G}$ there exists i_{0} such that $x \in a_{i_{0}}+\mathfrak{H}_{\epsilon}$.

$$
|f(x)-g(x)|=\left|f(x)-f\left(a_{i_{0}}\right)\right|<\epsilon
$$

since $x-a_{i_{0}} \in \mathfrak{H}_{\epsilon}$ and f is uniformly continuous.
Hence

$$
\|f(x)-g(x)\|=\sup _{x \in \mathfrak{G}}|f(x)-g(x)| \leq \epsilon
$$

We conclude that $\operatorname{Step}(\mathfrak{G})$ is dense in $\mathscr{C}\left(\mathfrak{G}, \mathbb{C}_{p}\right)$.
Definition. If $f=\sum_{i=1}^{n} \alpha_{i} \chi_{a_{i}+\mathfrak{H}} \in \operatorname{Step}(\mathfrak{G})$ we set

$$
\int_{\mathfrak{G}} f d \mu=\sum_{i=1}^{n} \alpha_{i} \mu\left(a_{i}+\mathfrak{H}\right)
$$

Lemma. The definition above is independent on the choice of \mathfrak{H}.
Since $\operatorname{Step}(\mathfrak{G})$ si dense in $\mathscr{C}\left(\mathfrak{G}, \mathbb{C}_{p}\right)$, then for all f continuous function we have a sequence $\left\{h_{n}\right\}_{n \in \mathbb{N}}$ of locally constant functions converging to f.

Definition. We set

$$
\int_{\mathfrak{G}} f d \mu=\lim _{n \rightarrow \infty} \int_{\mathfrak{G}} h_{n} d \mu
$$

This is a good definition since we have the following
Theorem. Let $\left\{g_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of locally constant functions such that

$$
\lim _{n \rightarrow \infty} g_{n}=f
$$

then we have
i. The sequence $\left\{\int_{\mathfrak{G}} g_{n} d \mu\right\}_{n \in \mathbb{N}}$ is Cauchy.
ii. The quantity

$$
\lim _{n \rightarrow \infty} \int_{\mathfrak{G}} g_{n} d \mu
$$

does not depends on the choice of $\left\{g_{n}\right\}_{n \in \mathbb{N}}$ but only on f.

Proof. i. $\lim _{n \rightarrow \infty} g_{n}=f$ and $\left\{g_{n}\right\}_{n \in \mathbb{N}}$ is Cauchy.
Then $\left(g_{n+1}-g_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$ and $\left\|g_{n+1}-g_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$.

$$
\begin{gathered}
\int_{\mathfrak{G}}\left(g_{n+1}-g_{n}\right) d \mu=\int_{\mathfrak{G}} g_{n+1} d \mu-\int_{\mathfrak{G}} g_{n} d \mu \\
\left|\int_{\mathfrak{G}}\left(g_{n+1}-g_{n}\right) d \mu\right| \leq\left\|g_{n+1}-g_{n}\right\| \cdot\|\mu\|
\end{gathered}
$$

where $\|\mu\|=\sup _{\mathcal{U}}|\mu(\mathcal{U})|$. Since $\|\mu\|$ is bounded and $\left\|g_{n+1}-g_{n}\right\| \rightarrow 0$ we have

$$
\left|\int_{\mathfrak{G}}\left(g_{n+1}-g_{n}\right) d \mu\right|=\left|\int_{\mathfrak{G}} g_{n+1} d \mu-\int_{\mathfrak{G}} g_{n} d \mu\right| \leq\left\|g_{n+1}-g_{n}\right\| \cdot\|\mu\| \rightarrow 0
$$

ii. Suppose we have $\left\{g_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{h_{n}\right\}_{n \in \mathbb{N}}$ two sequences converging to f.

$$
\begin{aligned}
\mid \int_{\mathfrak{G}} h_{n} d \mu & -\int_{\mathfrak{G}} g_{n} d \mu\left|=\left|\int_{\mathfrak{G}}\left(h_{n}-g_{n}\right) d \mu\right| \leq\left\|h_{n}-g_{n} \mid\right\|\|\mu\|=\right. \\
& =\left\|h_{n}-f+f-g_{n}\right\|\|\mu\| \leq \max \left\{\left\|h_{n}-f\right\| ;\left\|f-g_{n}\right\|\right\}\|\mu\|
\end{aligned}
$$

but $\left\|h_{n}-f\right\| \rightarrow 0$ as $n \rightarrow \infty$ and $\left\|f-g_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$. Moreover μ is bounded. So we have

$$
\left|\int_{\mathfrak{G}} h_{n} d \mu-\int_{\mathfrak{G}} g_{n} d \mu\right| \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Definition. We define the convolution product in $\operatorname{Meas}\left(\mathfrak{G}, \mathbb{Z}_{p}\right)$ as $\mu_{1} * \mu_{2}$ in this way:

$$
\int_{\mathfrak{G}} f(x) d\left(\mu_{1} * \mu_{2}\right)(x)=\int_{\mathfrak{G}}\left(\int_{\mathfrak{G}} f(x+y) d \mu_{1}(x)\right) d \mu_{2}(y)
$$

With this definition we know the behaviour of $\mu_{1} * \mu_{2}$ on all subsets $A \subset \mathfrak{G}$:

$$
\mu_{1} * \mu_{2}(A)=\int_{\mathfrak{G}} \chi_{A} d\left(\mu_{1} * \mu_{2}\right)
$$

Theorem. $\Lambda(\mathfrak{G})$ and $\operatorname{Meas}\left(\mathfrak{G}, \mathbb{Z}_{p}\right)$ are isomorphic.
Proof. We want to find an isomorphism

$$
\Psi: \Lambda(\mathfrak{G}) \rightarrow \operatorname{Meas}\left(\mathfrak{G}, \mathbb{Z}_{p}\right)
$$

Let's consider $\lambda \in \Lambda(\mathfrak{G})$. $\lambda=\left(\lambda_{\mathfrak{H}}\right)_{\mathfrak{H}}$. We want to find $\mu_{\lambda} \in \operatorname{Meas}\left(\mathfrak{G}, \mathbb{Z}_{p}\right)$. We only need to describe what is $\mu_{\lambda}(a+\Gamma)$. Indeed, every compact subset of \mathfrak{G} is union of elements of this form: $a+\Gamma$ where $a \in \mathfrak{G}$ and $\Gamma \subseteq \mathfrak{G}$ is in $\mathcal{T}_{\mathfrak{G}}$.

$$
\lambda_{\Gamma}=\sum_{\sigma \in \mathfrak{G} / \Gamma} a_{\sigma} \sigma \quad a_{\sigma} \in \mathbb{Z}_{p}
$$

Let be $\bar{\gamma} \in \mathfrak{G} / \Gamma . \bar{\gamma}$ is one of the σ and $a_{\bar{\gamma}} \in \mathbb{Z}_{p}$. We set

$$
\mu_{\lambda}(\gamma+\Gamma)=a_{\bar{\gamma}}
$$

Clearly μ_{λ} is bounded since $a_{\bar{\gamma}}$ si in \mathbb{Z}_{p}.
We now want to check the additivity of μ : if $\gamma+\Gamma=\amalg_{i=1}^{n}\left(a_{i}+\mathfrak{H}\right)$ with $\mathfrak{H} \subseteq \Gamma \subseteq \mathfrak{G}$ and a_{i} are the representatives of all the elements in $\alpha_{i} \in \mathfrak{G} / \mathfrak{H}$ such that $\alpha_{i}=\gamma \bmod \Gamma$, then we claim that

$$
\mu_{\lambda}(\gamma+\Gamma)=\mu_{\lambda}\left(\amalg_{i=1}^{n}\left(a_{1}+\mathfrak{H}\right)\right)=\sum_{i=1}^{n} \mu_{\lambda}\left(a_{i}+\mathfrak{H}\right)
$$

But this is plain from the compatibility of the family $\lambda=\left(\lambda_{\mathfrak{K}}\right)_{\mathfrak{K}}$. Indeed, if

$$
\lambda_{\Gamma}=\sum_{\sigma \in \mathfrak{G} / \Gamma} a_{\sigma} \sigma \quad \text { and } \quad \lambda_{\mathfrak{H}}=\sum_{\tau \in \mathfrak{G} / \mathfrak{H}} b_{\tau} \tau
$$

then

$$
\begin{aligned}
\mu_{\lambda}(\gamma+\Gamma)=a_{\sigma_{0}} & \text { where } \gamma=\sigma_{0}
\end{aligned} \quad \bmod \Gamma ~=\sum_{i=1}^{n} b_{\tau_{i}} \quad \text { where } a_{i}=\tau_{i} \quad \bmod \mathfrak{H}
$$

Since

$$
\begin{aligned}
\pi: \mathbb{Z}[\mathfrak{G} / \mathfrak{H}] & \rightarrow \mathbb{Z}[\mathfrak{G} / \Gamma] \\
\lambda_{\mathfrak{H}} & \rightarrow \lambda_{\Gamma} \\
\sum_{\tau \in \mathfrak{G} / \mathfrak{H}} b_{\tau} \tau & \rightarrow \sum_{\sigma \in \mathfrak{G} / \Gamma} a_{\sigma} \sigma
\end{aligned}
$$

then

$$
\sum_{\sigma \in \mathfrak{G} / \Gamma} a_{\sigma} \sigma=\pi\left(\sum_{\tau \in \mathfrak{G} / \mathfrak{H}} b_{\tau} \tau\right)=\sum_{\sigma \in \mathfrak{G} / \Gamma}\left(\sum_{\tau \equiv \Gamma \sigma} b_{\tau}\right) \sigma
$$

and we conclude that $a_{\sigma_{0}}=\sum_{\tau \equiv_{\Gamma} \sigma_{0}} b_{\tau}=\sum_{i=1}^{n} b_{\tau_{i}}$.
It can be shown that the product in $\Lambda(\mathfrak{G})$ gives the convolution product in $\operatorname{Meas}\left(\mathfrak{G}, \mathbb{Z}_{p}\right)$ and so Ψ is a \mathbb{Z}_{p}-algebras homomorphism.
Ψ is injective since $\operatorname{ker}(\Psi)=\{0\}$. Indeed, if $\Psi(\lambda)=0 \in \operatorname{Meas}\left(\mathfrak{G}, \mathbb{Z}_{p}\right)$ then $0(A)=0$ for all $A \subset \mathfrak{G}$. Then every component of λ is 0 and so $\lambda=0$.
Finally Ψ is surjective: given a measure $\mu \in \operatorname{Meas}\left(\mathfrak{G}, \mathbb{Z}_{p}\right)$ then we can construct a sequence $\left(\lambda_{\mathfrak{H}}\right)_{\mathfrak{H}}$ where $\lambda_{\mathfrak{H}}=\sum_{\sigma \in \mathfrak{G} / \mathfrak{h}} \mu(\sigma+\mathfrak{H}) \sigma$. The only thing we have to check is that $\left(\lambda_{\mathfrak{H}}\right)_{\mathfrak{H}} \in \Lambda(\mathfrak{G})$ i.e. that $\left(\lambda_{\mathfrak{H}}\right)_{\mathfrak{H}}$ is a compatible system.
Suppose we have $\mathfrak{H} \subset \Gamma \subset \mathfrak{G}$ then $\Gamma=\amalg\left(a_{i}+\mathfrak{H}\right)$ then

$$
\begin{aligned}
& \lambda_{\Gamma}=\sum_{\sigma \in \mathfrak{G} / \Gamma} \mu(\sigma+\Gamma) \sigma \\
& \lambda_{\mathfrak{H}}=\sum_{\tau \in \mathfrak{G} / \mathfrak{H}} \mu(\tau+\mathfrak{H}) \tau
\end{aligned}
$$

Now we use the additivity of the measure μ to prove the compatibility of $\left(\lambda_{\mathfrak{H}}\right)_{\mathfrak{H}}$

$$
\begin{aligned}
\pi\left(\lambda_{\mathfrak{H}}\right) & =\pi\left(\sum_{\tau \in \mathfrak{G} / \mathfrak{H}} \mu(\tau+\mathfrak{H}) \tau\right)=\sum_{\sigma \in \mathfrak{G} / \Gamma}\left(\sum_{\tau \equiv \Gamma} \mu(\tau+\mathfrak{H})\right) \sigma= \\
& =\sum_{\sigma \in \mathfrak{G} / \Gamma} \mu\left(\coprod_{\tau \equiv \Gamma}(\tau+\mathfrak{H})\right) \sigma=\sum_{\sigma \in \mathfrak{G} / \Gamma} \mu(\sigma+\Gamma) \sigma=\lambda_{\Gamma}
\end{aligned}
$$

The isomorphism we built allows us to speak about integration of continuous functions against an element $\lambda \in \Lambda(\mathfrak{G})$: setting $\lambda=\left(\lambda_{\mathfrak{K}}\right)_{\mathfrak{K}}=\left(\sum_{x \in \mathfrak{B} / \mathfrak{K}} c_{\mathfrak{K}}(x) x\right)$ with $c_{\mathfrak{H}}(x) \in \mathbb{Z}_{p}$, we define the integral of a function f locally constant on \mathfrak{H} as

$$
\int_{\mathfrak{G}} f d \lambda=\sum_{x \in \mathfrak{B} / \mathfrak{H}} f(x) c_{\mathfrak{H}}(x)
$$

Observation. Since the $c_{\mathfrak{H}}$ lie in \mathbb{Z}_{p} we have

$$
\left|\int_{\mathfrak{G}} f d \lambda\right|_{p} \leq\|f\|
$$

Indeed $\left|\int_{\mathfrak{G}} f d \lambda\right|_{p}=\left|\sum_{x \in \mathfrak{B} / \mathfrak{H}} f(x) c_{\mathfrak{H}}(x)\right| \leq \max \left\{\left|f(x) c_{\mathfrak{H}}(x)\right|\right\}$ and, since $c_{\mathfrak{H}}(x) \in$ \mathbb{Z}_{p}, then $\left|c_{\mathfrak{H}}(x)\right| \leq 1$. We conclude that

$$
\left|\int_{\mathfrak{G}} f d \lambda\right|_{p} \leq \max \left\{|f(x)| \cdot\left|c_{\mathfrak{H}}(x)\right|\right\} \leq\|f\| \cdot 1=\|f\|
$$

If f is any continuous function and $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ is a sequence converging to f, then

$$
\int_{\mathfrak{G}} f d \lambda=\lim _{n \rightarrow \infty} \int_{\mathfrak{G}} f_{n} d \lambda
$$

We have a linear functional

$$
\begin{aligned}
M_{\lambda}: \mathscr{C}\left(\mathfrak{G}, \mathbb{C}_{p}\right) & \longrightarrow \mathbb{C}_{p} \\
f & \longrightarrow \int_{\mathfrak{G}} f d \lambda
\end{aligned}
$$

satisfying $\left|M_{\lambda}(f)\right| \leq\|f\|$.
It is clear that if $M_{\lambda_{1}}=M_{\lambda_{2}}$, then $\lambda_{1}=\lambda_{2}$. Finally, $M_{\lambda}(f)$ belongs to \mathbb{Q}_{p} when f takes values in \mathbb{Q}_{p}. Conversely we have the following lemma

Lemma. Every linear functional \mathcal{L} on $\mathscr{C}\left(\mathfrak{G}, \mathbb{C}_{p}\right)$ satisfying $|\mathcal{L}(f)|_{p} \leq\|f\|$ for all continuous functions f and $\mathcal{L}(f)$ belongs to \mathbb{Q}_{p} when f takes values in \mathbb{Q}_{p}, is of the form $\mathcal{L}=M_{\lambda}$ for a unique λ in $\Lambda(\mathfrak{G})$.
Proof. The element λ can be obtained as follows. For each open subgroup \mathfrak{H} of \mathfrak{G}, and each coset x of $\mathfrak{G} / \mathfrak{H}$, we put $c_{\mathfrak{H}}(x)=\mathcal{L}\left(\chi_{x}\right)$ where χ_{x} is the characteristic function of x, and then define $\lambda_{\mathfrak{H}}$ by the formula $\lambda_{\mathfrak{H}}=\sum_{\sigma \in \mathfrak{G} / \mathfrak{H}} c_{\mathfrak{H}}(\sigma) \sigma$. These elements $\lambda_{\mathfrak{H}}$ are clearly compatible and so give an element in $\Lambda(\mathfrak{G})$.

Observation. If $\lambda=g$ in \mathfrak{G}, then $d g$ is the Dirac measure given by

$$
\int_{\mathfrak{G}} f d g=f(g)
$$

Observation. The product in $\Lambda(\mathfrak{G})$ corresponds to the convolution of measures which we recall is defined by

$$
\int_{\mathfrak{G}} f(x) d\left(\lambda_{1} * \lambda_{2}\right)(x)=\int_{\mathfrak{G}}\left(\int_{\mathfrak{G}} f(x+y) d \lambda_{1}(x)\right) d \lambda_{2}(y)
$$

Observation. If $\nu: \mathfrak{G} \rightarrow \mathbb{C}_{p}$ is a continuous group homomorphism, then one sees easily that we can extend ν to a continuous algebra homomorphism,

$$
\nu: \Lambda(\mathfrak{G}) \rightarrow \mathbb{C}_{p}
$$

by the formula $\nu(\lambda)=\int_{\mathfrak{G}} \nu d \lambda$.
Observation. To take account of the fact that the p-adic analogue of the complex Riemann zeta function also has a pole, we now introduce the notion of a p-adic pseudo-measure on \mathfrak{G}. Let $\mathcal{Q}(\mathfrak{G})$ be the total ring of fractions of $\Lambda(\mathfrak{G})$, i.e. the set of all quotients α / β with α and β in $\Lambda(\mathfrak{G})$ and β a non-zero divisor. We say that an element λ of $\mathcal{Q}(\mathfrak{G})$ is a pseudo-measure on \mathfrak{G} if $(g-1) \lambda$ is in $\Lambda(\mathfrak{G})$ for all g in \mathfrak{G}.
Suppose that λ is a pseudo-measure on \mathfrak{G} and let ν be a homomorphism from \mathfrak{G} to \mathbb{C}_{p} which is not identically one. We can then define

$$
\int_{\mathfrak{G}} \nu d \lambda=\frac{\int_{\mathfrak{G}} \nu d((g-1) \lambda)}{\nu(g)-1}
$$

where g is any element of \mathfrak{G} with $\nu(g) \neq 1$. This is independent of the choice of g because, as remarked earlier ν extends to a ring homomorphism from $\Lambda(\mathfrak{G})$ to \mathbb{C}_{p}.

2 Mahler transform

We now specialize our argument for the Iwasawa algebra of \mathbb{Z}_{p}.
Let be $R=\mathbb{Z}_{p} \llbracket T \rrbracket$ the ring of formal power series.
Definition. As usual we define

$$
\binom{x}{n}= \begin{cases}1 & n=0 \\ \frac{x \cdot(x-1) \cdot \ldots \cdot(x-n+1)}{n!} & \text { otherwise }\end{cases}
$$

Theorem. The functions

$$
\binom{x}{0},\binom{x}{1},\binom{x}{2},\binom{x}{3}, \ldots
$$

form an orthonormal basis (Mahler basis) of $\mathscr{C}\left(\mathbb{Z}_{p}, \mathbb{C}_{p}\right)$.
Theorem (Mahler). Let $f: \mathbb{Z}_{p} \rightarrow \mathbb{C}_{p}$ be any continuous function. Then f can be written uniquely in the form:

$$
f(x)=\sum_{n=0}^{\infty} a_{n}\binom{x}{n}
$$

where $a_{n} \in \mathbb{C}_{p}$ tends to 0 as $n \rightarrow \infty$.
Proof. We take

$$
a_{n}(f)=\sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k} f(k)
$$

The idea of the proof is very easy. It is clear that

$$
f(n)=\sum_{k=0}^{n} a_{k}(f)\binom{n}{k}
$$

If we show that $\lim _{n \rightarrow \infty}\left|a_{n}(f)\right|_{p}=0$ then the series

$$
\sum_{k=0}^{\infty} a_{k}(f)\binom{x}{k}
$$

converges uniformly and, since f is continous, its sum is $f(x)$ in view of the relation for $f(n)$ and the fact that non-negative integers are dense in \mathbb{Z}_{p}.
A complete proof can be found in
[A Simple Proof of Mahlers Theorem on Approximation of Continuous Functions of a p-adic Variable by Polynomials $-R$. Bojanic]

Note that the coefficients a_{n} are given by $a_{n}=\left(\nabla^{n} f\right)(0)$ where

$$
\nabla f(x)=f(x+1)-f(x)
$$

Lemma. $\left|\binom{x}{n}\right| \leq 1$ for all $x \in \mathbb{Z}_{p}$ and $n \in \mathbb{Z}$.
Proof. For any $x \in \mathbb{Z}_{p}$ we can choose $y \in \mathbb{Z}$ such that

$$
\left|\frac{x-y}{n!}\right|_{p} \leq 1
$$

The existence of such a y is given by the density of \mathbb{Z} in \mathbb{Z}_{p}.
For $k=0,1,2, \ldots, n,\binom{y}{n-k}$ is a positive integer. Hence

$$
\left|\binom{y}{n-k}\right|_{p} \leq 1
$$

Further $\binom{x-y}{0}=1$ and

$$
\binom{x-y}{k}=\frac{(x-y)(x-y-1) \ldots(x-y-k+1)}{k!}=\frac{x-y}{n!} \lambda_{k}
$$

where λ_{k} is a p-adic integer. Therefore

$$
\left|\binom{x-y}{k}\right|_{p} \leq 1
$$

The identity (Vandermonde Convolution)

$$
\binom{x}{n}=\sum_{k=0}^{n}\binom{x-y}{k}\binom{y}{n-k}
$$

implies

$$
\left|\binom{x}{n}\right|_{p} \leq 1 \Longrightarrow\binom{x}{n} \in \mathbb{Z}_{p}
$$

Since $\left|\binom{x}{n}\right|_{p} \leq 1$ for all x in \mathbb{Z}_{p}, it follows that $\|f\|=\sup \left|a_{n}\right|_{p}$. If λ is any element of $\Lambda\left(\mathbb{Z}_{p}\right)$, it follows from that

$$
c_{n}(\lambda)=\int_{\mathbb{Z}_{p}}\binom{x}{n} d \lambda \quad(n \geq 0)
$$

lies in \mathbb{Z}_{p}. This leads to the following definition.
Definition. We define the Mahler transform $\mathcal{M}: \Lambda\left(\mathbb{Z}_{p}\right) \rightarrow R$ by

$$
\mathcal{M}(\lambda)=\sum_{n=0}^{\infty} c_{n}(\lambda) T^{n}
$$

for $\lambda \in \Lambda\left(\mathbb{Z}_{p}\right)$.
Theorem. The Mahler transform is an isomorphism of \mathbb{Z}_{p}-algebras.
Proof. It is clear from the previous theorem that \mathcal{M} is injective, and is a $\mathbb{Z}_{p^{-}}$ module homomorphism. To see that it is bijective, we construct an inverse $\Upsilon: R \rightarrow \Lambda\left(\mathbb{Z}_{p}\right)$ as follows. Let $g(T)=\sum_{n=0}^{\infty} c_{n} T^{n}$ be any element of R. We can then define a linear functional \mathcal{L} on $\mathscr{C}\left(\mathbb{Z}_{p}, \mathbb{C}_{p}\right)$ by

$$
\mathcal{L}(f)=\sum_{n=0}^{\infty} a_{n} c_{n}
$$

where f has Mahler expansion $f(x)=\sum_{n=0}^{\infty} a_{n}\binom{x}{n}$. Of course, the series on the right converges because a_{n} tends to zero as $n \rightarrow \infty$. Since the c_{n} lie in \mathbb{Z}_{p}, it is clear that $|\mathcal{L}(f)|_{p} \leq\|f\|$ for all f. Hence there exists λ in $\Lambda\left(\mathbb{Z}_{p}\right)$ such that $\mathcal{L}=M_{\lambda}$, and we define $\Upsilon(g(T))=\lambda$. It is plain that Υ is an inverse of \mathcal{M}. In fact, it can also be shown that \mathcal{M} preserves products, although we omit the proof here.

Lemma. We have $\mathcal{M}\left(\mathbb{Z}_{\mathbb{Z}_{p}}\right)=1+T$, and thus $\mathcal{M}: \Lambda\left(\mathbb{Z}_{p}\right) \rightarrow R$ is the unique isomorphism of topological \mathbb{Z}_{p}-algebras which sends the topological generator $1_{\mathbb{Z}_{p}}$ of \mathbb{Z}_{p} to $(1+T)$.

Proof. Take $\lambda=1_{\mathbb{Z}_{p}}$. By definition,

$$
\mathcal{M}(\lambda)=\sum_{n=0}^{\infty} c_{n}(\lambda) T^{n}
$$

where

$$
c_{n}(\lambda)=\int_{\mathbb{Z}_{p}}\binom{x}{n} d \lambda=\binom{1}{n}
$$

whence the first assertion is clear. For the second assertion, we note that it is well-known, that for each choice of a topological generator γ of \mathbb{Z}_{p}, there is a unique topological isomorphism of \mathbb{Z}_{p}-algebras, which maps γ to $(1+T)$.

Lemma. For all g in R, and all integers $k \geq 0$, we have the integral

$$
\int_{\mathbb{Z}_{p}} x^{k} d(\Upsilon(g(T)))=\left(D^{k} g(T)\right)_{T=0}
$$

where $D=(1+T) \frac{d}{d T}$.

Proof. For fixed $g(T)=\sum_{n=0}^{\infty} c_{n} T^{n}$ in R, consider the linear functional \mathcal{L} on $\mathscr{C}\left(\mathbb{Z}_{p}, \mathbb{C}_{p}\right)$ defined by

$$
\mathcal{L}(f)=\int_{\mathbb{Z}_{p}} x f(x) d \Upsilon(g(T))
$$

Clearly, we have $|\mathcal{L}(f)|_{p} \leq\|f\|$, and so $\mathcal{L}=M_{\lambda}$ for some $\lambda \in \Lambda\left(\mathbb{Z}_{p}\right)$, whence we obtain

$$
\int_{\mathbb{Z}_{p}} x f(x) d \Upsilon(g(T))=\int_{\mathbb{Z}_{p}} f(x) d \lambda
$$

We first claim that

$$
\mathcal{M}(\lambda)=D g(T)
$$

To prove this, we note that

$$
D g(T)=\sum_{n=0}^{\infty}\left(n c_{n}+(n+1) c_{n+1}\right) T^{n}
$$

On the other hand, by definition, $\mathcal{M}(\lambda)=\sum_{n=0}^{\infty} e_{n} T^{n}$, where

$$
e_{n}=\int_{\mathbb{Z}_{p}} x\binom{x}{n} d \Upsilon(g(T))
$$

But we have the identity

$$
x\binom{x}{n}=(n+1)\binom{x}{n+1}+n\binom{x}{n} \quad(n \geq 0)
$$

whence we get $e_{n}=n c_{n}+(n+1) c_{n+1}$ for all $n \geq 0$, thereby proving that $\mathcal{M}(\lambda)=D g(T)$.
But, for all $h(T) \in R$, we have

$$
\int_{\mathbb{Z}_{p}} d \Upsilon(h(T))=h(0)
$$

Indeed, $\Upsilon(h(T))=\lambda \in \Lambda\left(\mathbb{Z}_{p}\right)$ such that, if

$$
f(x)=\sum_{n=0}^{\infty} \alpha_{n}\binom{x}{n} \quad \text { and } \quad h(T)=\sum_{n=0}^{\infty} \beta_{n} T^{n}
$$

then

$$
\int_{\mathbb{Z}_{p}} f(x) d \lambda=\sum_{n=0}^{\infty} \alpha_{n} \beta_{n}
$$

Hence, if $f=1$ then $f=\sum_{n=0}^{\infty} \delta_{0, n}\binom{x}{n}$ and so

$$
\int_{\mathbb{Z}_{p}} 1 d(\Upsilon(h(T)))=\sum_{n=0}^{\infty} \delta_{0, n} \beta_{n}=\beta_{0}=h(0)
$$

So the assertion of the lemma is equivalent to

$$
\int_{\mathbb{Z}_{p}} x^{k} d(\Upsilon(g(T)))=\int_{\mathbb{Z}_{p}} d \Upsilon\left(D^{k} g(T)\right) \quad(k \geq 0)
$$

By an induction argument, we have

$$
\int_{\mathbb{Z}_{p}} d \Upsilon\left(D^{k} g(T)\right)=\int_{\mathbb{Z}_{p}} x^{k-1} d(\Upsilon(D g(T)))
$$

It is now plain by the fact that $\mathcal{M}(\lambda)=D g(T)$ and $\int_{\mathbb{Z}_{p}} x f(x) d \Upsilon(g(T))=$ $\int_{\mathbb{Z}_{p}} f(x) d \lambda$ that this is equal to

$$
\int_{\mathbb{Z}_{p}} x^{k} d \Upsilon(g(T))
$$

and the proof of the lemma is complete.

