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1 Iwasawa Algebras

First of all we want to recall some definitions and to fix the notation. We will
write G to indicate the Galois Group of the extension Q(µp∞) over Q:

G = Gal(Q(µp∞)/Q)

The Iwasawa algebra will play a fundamental role in this seminar: in general,
let G be a profinite abelian group. This means that G is a topological group
which is obtained as the projective limit of a discrete collection of finite groups,
each given the discrete topology.

G = lim
←

Fn

where (Fn, πn) is a projective system and Fn is a finite topological group for all
n. The topology on G is the topology originated by the projections

pn : G→ Fn

A basis for the topology is the set of all the preimages of open subsets in Fn
with respect to pn.
A neighbourhood basis for 0 is given by the set of ker(pn).
Let TG be the set of all open subgroups of G.

Theorem. A topological group is profinite if and only if it is Hausdorff, com-
pact, and totally disconnected.

We recall that a topological space is totally disconnected if the only (non-
empty) connected subsets are one-point subsets, or equivalently, if for any two
points there is an open and closed subset containing one but not the other.

Proposition. Let G be a compact group, and H ⊆ G a subgroup. Then H is
open if and only if H is closed and of finite index.

Proof. Suppose H is open. Then H has finite index, since G is compact and every
coset of an open subgroup is open. H is then also closed, since its complement
is a union of cosets, each of which is open. Conversely, if H is closed and has
finite index, then its complement is a finite union of closed cosets, and hence
closed, so H is open.

Corollary. Let G be a profinite group, and H ⊆ G a subgroup. Then H is open
if and only if H is closed and has finite index.
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We conclude that every element in TG has finite index in G. This means
that for all H open subgroup of G, the quotient G/H is a finite group.

Definition. Given a profinite abelian group G, we define the Iwasawa algebra
to be

Λ(G) = lim
←

Zp[G/H]

where H runs over TG, and Zp[G/H] denotes the ordinary group ring over Zp.

The topology on Λ(G) is given by the projection maps

πH : Λ(G) = lim
←

Zp[G/H]→ Zp[G/H]

Hence the open subsets of Λ(G) are the preimages of open subsets in Zp[G/H].

Lemma. For all U ∈ TG, we can write U ha a disjoint union:

U =

n∐
i=1

(qi + H)

Where qi are representants of the elements of U/H.

Example. We know that
pZp
p2Zp '

Z
pZ

1+pZp = (1+p2Zp)+((1+p)+p2Zp)+((1+2p)+p2Zp)+. . .+((1+(p−1)p)+p2Zp)

We obtain

(1 + pZp) =

p−1∐
n=0

((1 + np) + p2Zp)

we recall that
(1 + pZp) = {x ∈ Zp | ν(x− 1) ≥ 1}

And so we have the following representation:

1 + p

1 + 2p

1 + p2 − p

1

The small open disks cover the big disk and they are disjoint.

Recall. If we have two disks D1;D2 in Qp we only have two possibilities:

• D1 ∩D2 = ∅

• D1 ⊂ D2 or D2 ⊂ D1
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The main goal of this work is to build a bijection

Λ(G)←→Meas(G,Zp)
λ←→µλ

associating to every element of the Iwasawa algebra a p-adic measure valued in
Zp.
Definition. A p-adic distribution is a map

µ : T = {open and compact subsets of Λ(G)} → Cp
which is additive. This means that if we consider a disjoint family {Un}Nn=1 of
elements of T , where Un ∩ Um = ∅ for all n 6= m, then

µ(

N∐
n=1

Un) =

N∑
n=1

µ(Un)

Definition. A p-adic measure is a bounded p-adic distribution.
A p-adic distribution is bounded if there exists B ∈ R such that ||µ(U)|| < B
for all U . Equivalently, working with the p-adic valuation, if there exists C ∈ R
such that |µ(U)|p > C for all U .

Remark. If our measure takes values in Zp we do not need the condition ||µ(U)|| <
B for all U since |x|p ≤ 1 for all x ∈ Zp.

Let Cp be the completion of the algebraic closure of the field of p-adic num-
bers Qp, and write | · |p for its p-adic norm.

Definition. We write C (G,Cp) = {Continuous functions from G to Cp} for
the Cp-algebra of continuous functions from G to Cp.

We can define a norm on C (G,Cp) by

||f || = sup
g∈G
|f(g)|p

Observation. ||f || is well defined as supg∈G |f(g)|p is finite: indeed, G is compact
and so f is bounded =⇒ supg∈G |f(g)|p is bounded.

This norm makes C (G,Cp) into a Cp Banach space.

Definition. A function f : G → Cp is said to be locally constant if, for all
a ∈ G, there exist an open subgroup H ⊆ G such that f|a+H is constant, i.e.
f(a+ h) = f(a), for all h ∈ H

In other words, a function f in C (G,Cp) is defined to be locally constant
if there exists an open subgroup H of G such that f is constant modulo H, i.e.
gives a function from G/H to Cp.
Definition. We write Step(G) for the sub-algebra of locally constant functions.

Let f be constant modulo H.

G = (a1 + H)q . . .q (an + H)

with ai representants of G/H. Then we can write

f =

n∑
i=1

αiχai+H αi ∈ Cp

H is an open and compact set =⇒ H is open and closed =⇒ χai+H is continuous.
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We have the following lemma:

Lemma. Step(G) is dense in C (G,Cp).

Proof. Step(G) ⊆ C (G,Cp) and ||f || = supg∈G |f(g)|.
Let f ∈ C (G,Cp); f : G→ Cp. Since G is compact, we have that f is uniformly
continuous:

∀ε > 0, ∃Hε ⊆ G open subset such that ∀x, y ∈ G with x−y ∈ Hε ⇒ |f(x)−f(y)| < ε

Let G/Hε = {a1; . . . ; an}. We set

g =

n∑
i=1

f(ai)χai+Hε ∈ Step(G)

For all x ∈ G there exists i0 such that x ∈ ai0 + Hε.

|f(x)− g(x)| = |f(x)− f(ai0)| < ε

since x− ai0 ∈ Hε and f is uniformly continuous.
Hence

||f(x)− g(x)|| = sup
x∈G
|f(x)− g(x)| ≤ ε

We conclude that Step(G) is dense in C (G,Cp).

Definition. If f =
∑n
i=1 αiχai+H ∈ Step(G) we set∫

G

fdµ =

n∑
i=1

αiµ(ai + H)

Lemma. The definition above is independent on the choice of H.

Since Step(G) si dense in C (G,Cp), then for all f continuous function we
have a sequence {hn}n∈N of locally constant functions converging to f .

Definition. We set ∫
G

fdµ = lim
n→∞

∫
G

hndµ

This is a good definition since we have the following

Theorem. Let {gn}n∈N be a sequence of locally constant functions such that

lim
n→∞

gn = f

then we have

i. The sequence {
∫
G
gndµ}n∈N is Cauchy.

ii. The quantity

lim
n→∞

∫
G

gndµ

does not depends on the choice of {gn}n∈N but only on f .
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Proof. i. lim
n→∞

gn = f and {gn}n∈N is Cauchy.

Then (gn+1 − gn)→ 0 as n→∞ and ||gn+1 − gn|| → 0 as n→∞.∫
G

(gn+1 − gn)dµ =

∫
G

gn+1dµ−
∫
G

gndµ

|
∫
G

(gn+1 − gn)dµ| ≤ ||gn+1 − gn|| · ||µ||

where ||µ|| = supU |µ(U)|. Since ||µ|| is bounded and ||gn+1− gn|| → 0 we
have

|
∫
G

(gn+1 − gn)dµ| = |
∫
G

gn+1dµ−
∫
G

gndµ| ≤ ||gn+1 − gn|| · ||µ|| → 0.

ii. Suppose we have {gn}n∈N and {hn}n∈N two sequences converging to f .

|
∫
G

hndµ−
∫
G

gndµ| = |
∫
G

(hn − gn)dµ| ≤ ||hn − gn||||µ|| =

= ||hn − f + f − gn||||µ|| ≤ max{||hn − f ||; ||f − gn||}||µ||

but ||hn − f || → 0 as n → ∞ and ||f − gn|| → 0 as n → ∞. Moreover µ
is bounded. So we have

|
∫
G

hndµ−
∫
G

gndµ| → 0 as n→∞

Definition. We define the convolution product in Meas(G,Zp) as µ1 ∗ µ2 in
this way: ∫

G

f(x)d(µ1 ∗ µ2)(x) =

∫
G

(

∫
G

f(x+ y)dµ1(x))dµ2(y)

With this definition we know the behaviour of µ1 ∗ µ2 on all subsets A ⊂ G:

µ1 ∗ µ2(A) =

∫
G

χAd(µ1 ∗ µ2)

Theorem. Λ(G) and Meas(G,Zp) are isomorphic.

Proof. We want to find an isomorphism

Ψ : Λ(G)→Meas(G,Zp)

Let’s consider λ ∈ Λ(G). λ = (λH)H. We want to find µλ ∈ Meas(G,Zp). We
only need to describe what is µλ(a+ Γ). Indeed, every compact subset of G is
union of elements of this form: a+ Γ where a ∈ G and Γ ⊆ G is in TG.

λΓ =
∑

σ∈G/Γ

aσσ aσ ∈ Zp

Let be γ ∈ G/Γ. γ is one of the σ and aγ ∈ Zp. We set

µλ(γ + Γ) = aγ
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Clearly µλ is bounded since aγ si in Zp.
We now want to check the additivity of µ: if γ + Γ = qni=1(ai + H) with
H ⊆ Γ ⊆ G and ai are the representatives of all the elements in αi ∈ G/H such
that αi = γ mod Γ, then we claim that

µλ(γ + Γ) = µλ(qni=1(a1 + H)) =

n∑
i=1

µλ(ai + H)

But this is plain from the compatibility of the family λ = (λK)K. Indeed, if

λΓ =
∑

σ∈G/Γ

aσσ and λH =
∑

τ∈G/H

bττ

then

µλ(γ + Γ) = aσ0 where γ = σ0 mod Γ
n∑
i=1

µλ(ai + H) =

n∑
i=1

bτi where ai = τi mod H

Since

π : Z[G/H]→Z[G/Γ]

λH →λΓ∑
τ∈G/H

bττ →
∑

σ∈G/Γ

aσσ

then ∑
σ∈G/Γ

aσσ = π(
∑

τ∈G/H

bττ) =
∑

σ∈G/Γ

(
∑
τ≡Γσ

bτ )σ

and we conclude that aσ0
=
∑
τ≡Γσ0

bτ =
∑n
i=1 bτi .

It can be shown that the product in Λ(G) gives the convolution product in
Meas(G,Zp) and so Ψ is a Zp-algebras homomorphism.
Ψ is injective since ker(Ψ) = {0}. Indeed, if Ψ(λ) = 0 ∈ Meas(G,Zp) then
0(A) = 0 for all A ⊂ G. Then every component of λ is 0 and so λ = 0.
Finally Ψ is surjective: given a measure µ ∈Meas(G,Zp) then we can construct
a sequence (λH)H where λH =

∑
σ∈G/h µ(σ + H)σ. The only thing we have to

check is that (λH)H ∈ Λ(G) i.e. that (λH)H is a compatible system.
Suppose we have H ⊂ Γ ⊂ G then Γ = q(ai + H) then

λΓ =
∑

σ∈G/Γ

µ(σ + Γ)σ

λH =
∑

τ∈G/H

µ(τ + H)τ

Now we use the additivity of the measure µ to prove the compatibility of (λH)H

π(λH) = π(
∑

τ∈G/H

µ(τ + H)τ) =
∑

σ∈G/Γ

(
∑
τ≡Γσ

µ(τ + H))σ =

=
∑

σ∈G/Γ

µ(
∐
τ≡Γσ

(τ + H))σ =
∑

σ∈G/Γ

µ(σ + Γ)σ = λΓ
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The isomorphism we built allows us to speak about integration of continuous
functions against an element λ ∈ Λ(G): setting λ = (λK)K = (

∑
x∈B/K cK(x)x)

with cH(x) ∈ Zp, we define the integral of a function f locally constant on H as∫
G

fdλ =
∑

x∈B/H

f(x)cH(x)

Observation. Since the cH lie in Zp we have

|
∫
G

fdλ|p ≤ ||f ||

Indeed |
∫
G
fdλ|p = |

∑
x∈B/H f(x)cH(x)| ≤ max{|f(x)cH(x)|} and, since cH(x) ∈

Zp, then |cH(x)| ≤ 1. We conclude that

|
∫
G

fdλ|p ≤ max{|f(x)| · |cH(x)|} ≤ ||f || · 1 = ||f ||

If f is any continuous function and {fn}n∈N is a sequence converging to f ,
then ∫

G

fdλ = lim
n→∞

∫
G

fndλ

We have a linear functional

Mλ : C (G,Cp) −→Cp

f −→
∫
G

fdλ

satisfying |Mλ(f)| ≤ ||f ||.
It is clear that if Mλ1

= Mλ2
, then λ1 = λ2. Finally, Mλ(f) belongs to Qp when

f takes values in Qp. Conversely we have the following lemma

Lemma. Every linear functional L on C (G,Cp) satisfying |L(f)|p ≤ ||f || for
all continuous functions f and L(f) belongs to Qp when f takes values in Qp,
is of the form L = Mλ for a unique λ in Λ(G).

Proof. The element λ can be obtained as follows. For each open subgroup H of
G, and each coset x of G/H, we put cH(x) = L(χx) where χx is the characteristic
function of x, and then define λH by the formula λH =

∑
σ∈G/H cH(σ)σ. These

elements λH are clearly compatible and so give an element in Λ(G).

Observation. If λ = g in G, then dg is the Dirac measure given by∫
G

fdg = f(g)

Observation. The product in Λ(G) corresponds to the convolution of measures
which we recall is defined by∫

G

f(x)d(λ1 ∗ λ2)(x) =

∫
G

(

∫
G

f(x+ y)dλ1(x))dλ2(y)
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Observation. If ν : G→ Cp is a continuous group homomorphism, then one sees
easily that we can extend ν to a continuous algebra homomorphism,

ν : Λ(G)→ Cp

by the formula ν(λ) =
∫
G
νdλ.

Observation. To take account of the fact that the p-adic analogue of the complex
Riemann zeta function also has a pole, we now introduce the notion of a p-adic
pseudo-measure on G. Let Q(G) be the total ring of fractions of Λ(G), i.e. the
set of all quotients α/β with α and β in Λ(G) and β a non-zero divisor. We say
that an element λ of Q(G) is a pseudo-measure on G if (g − 1)λ is in Λ(G) for
all g in G.
Suppose that λ is a pseudo-measure on G and let ν be a homomorphism from
G to Cp which is not identically one. We can then define∫

G

νdλ =

∫
G
νd((g − 1)λ)

ν(g)− 1

where g is any element of G with ν(g) 6= 1. This is independent of the choice of
g because, as remarked earlier ν extends to a ring homomorphism from Λ(G)
to Cp.

2 Mahler transform

We now specialize our argument for the Iwasawa algebra of Zp.
Let be R = ZpJT K the ring of formal power series.

Definition. As usual we define(
x

n

)
=

{
1 n = 0
x·(x−1)·...·(x−n+1)

n! otherwise

Theorem. The functions(
x

0

)
,

(
x

1

)
,

(
x

2

)
,

(
x

3

)
, . . .

form an orthonormal basis (Mahler basis) of C (Zp,Cp).

Theorem (Mahler). Let f : Zp → Cp be any continuous function. Then f can
be written uniquely in the form:

f(x) =

∞∑
n=0

an

(
x

n

)
where an ∈ Cp tends to 0 as n→∞.

Proof. We take

an(f) =

n∑
k=0

(−1)n−k
(
n

k

)
f(k)
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The idea of the proof is very easy. It is clear that

f(n) =

n∑
k=0

ak(f)

(
n

k

)
If we show that lim

n→∞
|an(f)|p = 0 then the series

∞∑
k=0

ak(f)

(
x

k

)
converges uniformly and, since f is continous, its sum is f(x) in view of the
relation for f(n) and the fact that non-negative integers are dense in Zp.
A complete proof can be found in
[A Simple Proof of Mahlers Theorem on Approximation of Continuous
Functions of a p− adic V ariable by Polynomials−R. Bojanic]

Note that the coefficients an are given by an = (∇nf)(0) where

∇f(x) = f(x+ 1)− f(x)

Lemma. |
(
x
n

)
| ≤ 1 for all x ∈ Zp and n ∈ Z.

Proof. For any x ∈ Zp we can choose y ∈ Z such that

|x− y
n!
|p ≤ 1

The existence of such a y is given by the density of Z in Zp.
For k = 0, 1, 2, . . . , n,

(
y

n−k
)

is a positive integer. Hence

|
(

y

n− k

)
|p ≤ 1

Further
(
x−y

0

)
= 1 and(

x− y
k

)
=

(x− y)(x− y − 1) . . . (x− y − k + 1)

k!
=
x− y
n!

λk

where λk is a p-adic integer. Therefore

|
(
x− y
k

)
|p ≤ 1

The identity (Vandermonde Convolution)(
x

n

)
=

n∑
k=0

(
x− y
k

)(
y

n− k

)
implies

|
(
x

n

)
|p ≤ 1 =⇒

(
x

n

)
∈ Zp
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Since |
(
x
n

)
|p ≤ 1 for all x in Zp, it follows that ||f || = sup |an|p.

If λ is any element of Λ(Zp), it follows from that

cn(λ) =

∫
Zp

(
x

n

)
dλ (n ≥ 0)

lies in Zp. This leads to the following definition.

Definition. We define the Mahler transform M : Λ(Zp)→ R by

M(λ) =

∞∑
n=0

cn(λ)Tn

for λ ∈ Λ(Zp).

Theorem. The Mahler transform is an isomorphism of Zp-algebras.

Proof. It is clear from the previous theorem that M is injective, and is a Zp-
module homomorphism. To see that it is bijective, we construct an inverse
Υ : R → Λ(Zp) as follows. Let g(T ) =

∑∞
n=0 cnT

n be any element of R. We
can then define a linear functional L on C (Zp,Cp) by

L(f) =

∞∑
n=0

ancn

where f has Mahler expansion f(x) =
∑∞
n=0 an

(
x
n

)
. Of course, the series on the

right converges because an tends to zero as n → ∞. Since the cn lie in Zp, it
is clear that |L(f)|p ≤ ||f || for all f . Hence there exists λ in Λ(Zp) such that
L = Mλ, and we define Υ(g(T )) = λ. It is plain that Υ is an inverse of M.
In fact, it can also be shown that M preserves products, although we omit the
proof here.

Lemma. We have M(1Zp) = 1 + T , and thus M : Λ(Zp) → R is the unique
isomorphism of topological Zp-algebras which sends the topological generator 1Zp
of Zp to (1 + T ).

Proof. Take λ = 1Zp . By definition,

M(λ) =

∞∑
n=0

cn(λ)Tn

where

cn(λ) =

∫
Zp

(
x

n

)
dλ =

(
1

n

)
whence the first assertion is clear. For the second assertion, we note that it is
well-known, that for each choice of a topological generator γ of Zp, there is a
unique topological isomorphism of Zp-algebras, which maps γ to (1 + T ).

Lemma. For all g in R, and all integers k ≥ 0, we have the integral∫
Zp
xkd(Υ(g(T ))) = (Dkg(T ))T=0

where D = (1 + T ) d
dT .
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Proof. For fixed g(T ) =
∑∞
n=0 cnT

n in R, consider the linear functional L on
C (Zp,Cp) defined by

L(f) =

∫
Zp
xf(x)dΥ(g(T ))

Clearly, we have |L(f)|p ≤ ||f ||, and so L = Mλ for some λ ∈ Λ(Zp), whence
we obtain ∫

Zp
xf(x)dΥ(g(T )) =

∫
Zp
f(x)dλ

We first claim that
M(λ) = Dg(T )

To prove this, we note that

Dg(T ) =

∞∑
n=0

(ncn + (n+ 1)cn+1)Tn

On the other hand, by definition, M(λ) =
∑∞
n=0 enT

n, where

en =

∫
Zp
x

(
x

n

)
dΥ(g(T ))

But we have the identity

x

(
x

n

)
= (n+ 1)

(
x

n+ 1

)
+ n

(
x

n

)
(n ≥ 0)

whence we get en = ncn + (n + 1)cn+1 for all n ≥ 0, thereby proving that
M(λ) = Dg(T ).
But, for all h(T ) ∈ R, we have∫

Zp
dΥ(h(T )) = h(0)

Indeed, Υ(h(T )) = λ ∈ Λ(Zp) such that, if

f(x) =

∞∑
n=0

αn

(
x

n

)
and h(T ) =

∞∑
n=0

βnT
n

then ∫
Zp
f(x)dλ =

∞∑
n=0

αnβn

Hence, if f = 1 then f =
∑∞
n=0 δ0,n

(
x
n

)
and so∫

Zp
1 d(Υ(h(T ))) =

∞∑
n=0

δ0,nβn = β0 = h(0)

So the assertion of the lemma is equivalent to∫
Zp
xkd(Υ(g(T ))) =

∫
Zp
dΥ(Dkg(T )) (k ≥ 0)
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By an induction argument, we have∫
Zp
dΥ(Dkg(T )) =

∫
Zp
xk−1d(Υ(Dg(T )))

It is now plain by the fact that M(λ) = Dg(T ) and
∫
Zp xf(x)dΥ(g(T )) =∫

Zp f(x)dλ that this is equal to ∫
Zp
xkdΥ(g(T ))

and the proof of the lemma is complete.
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