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1 Iwasawa Algebras

First of all we want to recall some definitions and to fix the notation. We will
write G to indicate the Galois Group of the extension Q(ppe) over Q:

G = Gal(Q(pup~)/Q)

The Iwasawa algebra will play a fundamental role in this seminar: in general,
let & be a profinite abelian group. This means that & is a topological group
which is obtained as the projective limit of a discrete collection of finite groups,
each given the discrete topology.

® = limG,
—

where (§,,m,) is a projective system and 7§, is a finite topological group for all
n. The topology on & is the topology originated by the projections

Pn G = Fn

A basis for the topology is the set of all the preimages of open subsets in §,
with respect to p,.

A neighbourhood basis for 0 is given by the set of ker(p,,).

Let Ts be the set of all open subgroups of &.

Theorem. A topological group is profinite if and only if it is Hausdorff, com-
pact, and totally disconnected.

We recall that a topological space is totally disconnected if the only (non-
empty) connected subsets are one-point subsets, or equivalently, if for any two
points there is an open and closed subset containing one but not the other.

Proposition. Let & be a compact group, and  C & a subgroup. Then $ is
open if and only if ) is closed and of finite index.

Proof. Suppose $) is open. Then $ has finite index, since & is compact and every
coset of an open subgroup is open. § is then also closed, since its complement
is a union of cosets, each of which is open. Conversely, if § is closed and has
finite index, then its complement is a finite union of closed cosets, and hence
closed, so §) is open. O

Corollary. Let & be a profinite group, and $ C & a subgroup. Then ) is open
if and only if $ is closed and has finite index.



We conclude that every element in 7 has finite index in &. This means
that for all ) open subgroup of &, the quotient &/ is a finite group.

Definition. Given a profinite abelian group &, we define the Iwasawa algebra
to be
A(®) = limZ,[6/9)]

where $ runs over T, and Z,[& /9] denotes the ordinary group ring over Z,.
The topology on A(®) is given by the projection maps

T+ A(6) = lim Zy[6 /9] — Z,[6/9)]

Hence the open subsets of A(®) are the preimages of open subsets in Z,[6/9].

Lemma. For allU € Tg, we can write U ha a disjoint union:

n

U= H(Qz +9)

i=1
Where q; are representants of the elements of U/$).

plp Z
*Z,

Ezxample. We know that 27~ pp

1+pZy = (14 Z)+((14p)+9°Zp)+((142p)+0°Zp)+. . +((14+(p—1)p)+p°Zy)

We obtain .
p—
(1+pZy) = []((1 +np) + p°Zp)
n=0
we recall that
(1+pr) ={z ¢ Ly | v(z—1) > 1}

And so we have the following representation:

The small open disks cover the big disk and they are disjoint.

Recall. If we have two disks D1; Dy in Q, we only have two possibilities:
e DiNDy = ]
e Dy C Dyor Dy C Dy



The main goal of this work is to build a bijection
A(®) «—Meas(®,Z,)
A
associating to every element of the Iwasawa algebra a p-adic measure valued in
Zy.
Definition. A p-adic distribution is a map
w: T = {open and compact subsets of A(&)} — C,

which is additive. This means that if we consider a disjoint family {U,}N_, of
elements of T, where U, NU,, = O for all n # m, then

N N
w(JTth) =3 uth)

Definition. A p-adic measure is a bounded p-adic distribution.

A p-adic distribution is bounded if there exists B € R such that ||u(U)|| < B
for allU. Equivalently, working with the p-adic valuation, if there exists C' € R
such that |w(U)|, > C for allU.

Remark. If our measure takes values in Z,, we do not need the condition ||u(U)|| <
B for all U since |z|, <1 for all z € Z,.

Let C,, be the completion of the algebraic closure of the field of p-adic num-
bers Q,, and write | - |, for its p-adic norm.

Definition. We write €(&,C,) = {Continuous functions from & to C,} for
the Cp-algebra of continuous functions from & to C,.

We can define a norm on (&, C,) by
[1£11 = sup [ £(9)lp
ge®

Observation. || f|| is well defined as sup ¢ | f(9)|p is finite: indeed, & is compact
and so f is bounded = sup¢¢ |f(9)l, is bounded.

This norm makes ¢'(®,C,) into a C, Banach space.

Definition. A function f : & — C, is said to be locally constant if, for all
a € B, there exist an open subgroup $ C & such that fi,q¢ is constant, i.e.

fla+1) = f(a), forall'h € H

In other words, a function f in €¢(®,C,) is defined to be locally constant
if there exists an open subgroup $) of & such that f is constant modulo $, i.e.
gives a function from &/ to C,.

Definition. We write Step(®) for the sub-algebra of locally constant functions.
Let f be constant modulo $.

&= (a1 +9H) ... (a, + $H)

with a; representants of &/$. Then we can write
n
f=Y iXa+s a; € G,
i=1

£ is an open and compact set = §) is open and closed = 4, +¢ is continuous.



We have the following lemma:
Lemma. Step(®) is dense in € (&,C,).

Proof. Step(&) € €(®,C,) and |[f[| = supgee | f(9)]-
Let f € €(&,C,); f: & — C,. Since & is compact, we have that f is uniformly
continuous:

Ve > 0, 39 C & open subset such thatVr,y € G withz—y € H. = |f(z)—f(y)| <e
Let /9 = {a1;...;a,}. We set
9= J(a:)Xa+5. € Step(®)
i=1

For all x € & there exists ip such that = € a;, + He.

[f (@) = g(@)| = [f(2) = flai)| <€

since z — a;, € $ and f is uniformly continuous.
Hence

1£(@) = g@)l| = sup | f(z) — gl@)] < e
We conclude that Step(®) is dense in €' (®,C,). O

Definition. If f = 31" | &iXa,+9 € Step(&) we set

/Q5 fdu =" aiplai + )
i=1

Lemma. The definition above is independent on the choice of §).

Since Step(®) si dense in € (6,C,), then for all f continuous function we
have a sequence {hy }nen of locally constant functions converging to f.

Definition. We set
/ fdp = lim hndu
& n— oo 1%}
This is a good definition since we have the following

Theorem. Let {g,}nen be a sequence of locally constant functions such that

lim g, = f

n—oo

then we have
i. The sequence {f(,j gndit}nen is Cauchy.
ii. The quantity
s [ v

does not depends on the choice of {gn}nen but only on f.



Proof. i. lim g, = f and {gy, }nen is Cauchy.
n—oo
Then (gn+1 — gn) — 0 as n — 0o and ||gn+1 — gnl| = 0 as n — oo.

/(gn-l-l_gn)d:u:/ gn+1du_/ gndu
(] & &

| / (gnsr — gn)dia] < |lgnsr — gall - L]
&

where ||p]| = supy, |p(Uf)]. Since ||u|| is bounded and ||gn+1 — gn|| — 0 we
have

| / (grst — gu)dia] = | / Gmirdis — / anddit] < [gnss — gnll - 1] = 0.
& & &

ii. Suppose we have {g, }nen and {h, }nen two sequences converging to f.

[ = [ gudil =1 [ = g1l < = 1] =
(] & &
— = £+ £ = galll] < mas( e = 715 15 = gnll}

but ||h, — f|] = 0 as n — oo and ||f — gn|| — 0 as n — co. Moreover pu
is bounded. So we have

\/hndu—/gndu|—>0 as n — oo
® ®

O

Definition. We define the convolution product in Meas(®,Zy,) as p * fo in
this way:

/@ F(@)d(un % o)) = /@ ( / £z + y)dus () dpa(y)

With this definition we know the behaviour of py * o on all subsets A C &:

p * pi2(A) =/ xXAd(pr * pi2)
&

Theorem. A(®) and Meas(®,Z,) are isomorphic.
Proof. We want to find an isomorphism
U:A(®) - Meas(®,Z,)

Let’s consider A € A(&). A = (Ag)5. We want to find py € Meas(®,Z,). We
only need to describe what is py(a +T'). Indeed, every compact subset of & is
union of elements of this form: a +I" where a € ® and I' C & is in Tg.

Ar = Z AyO Gg € Ly
ce® /T

Let be 7 € &/I". 7 is one of the o and a5 € Z,. We set

pa(y +T) = a5



Clearly p is bounded since ax si in Z,.
We now want to check the additivity of w: if v+ T = I ,(a; + $) with
$H CT C & and a; are the representatives of all the elements in «; € &/ such
that a; =y mod I', then we claim that

pa(y + 1) = pa (I (a1 + 9)) = ZNA(‘M +9)

But this is plain from the compatibility of the family A = (Ag)g. Indeed, if

Ar = Z A0 and Ay = Z b1

oce®/T TESG/H
then
(v +T) =ay, wherey=0p modT
Zu,\(ai +9) = an where a; = 7; mod §
i=1 i=1
Since
7 Z[B/9H] -Z[6/T)
)\ﬁ —Ar
Z b — Z g0
TEG/H ce®/T
then
> womn( X b= X (X e
ce® /T TESG/H ce6 /I’ T=ro
and we conclude that ag, =3 _ b, =31 br,.

It can be shown that the product in A(®) gives the convolution product in
Meas(®,Z,) and so VU is a Z,-algebras homomorphism.

U is injective since ker(¥) = {0}. Indeed, if ¥(\) = 0 € Meas(®,Z,) then
0(A) =0 for all A C &. Then every component of A is 0 and so A = 0.

Finally U is surjective: given a measure u € Meas(®,Z,) then we can construct
a sequence (Ag)n where Ay = 37 s/ (0 + H)o. The only thing we have to
check is that (Ag)es € A(®) ie. that (Ag)g is a compatible system.

Suppose we have $ C I' C & then I' = II(a; + $) then

Ar = Z wlo+T)o
ces /T

Ay = Z w(t + 9)7

TEG/H

Now we use the additivity of the measure u to prove the compatibility of (Ag)g

Thg)=7( Y pr+H)r) = D (D wr+9)o=

TEG/H ce® /T T=ro
ce® /T T=ro oce® /T



The isomorphism we built allows us to speak about integration of continuous
functions against an element A € A(&): setting A = (Ag)s = (X cm/q cr(2)T)
with cg(z) € Z,, we define the integral of a function f locally constant on £ as

/ fia= Y f@)es()
& zEB/H

Observation. Since the cg lie in Z, we have

|/®fdx|p <171

Indeed | [, fdA[, = | > vem /g f(@)es(@)] < max{[f(2)cs (2)[} and, since cq (2) €
Zy, then |cq(x)| < 1. We conclude that

\/ fdXp < max{[f ()] - |es (2)[} < |[f]]- 1= |11l
&

If f is any continuous function and {f,}nen iS @ sequence converging to f,
then

/ fdh= lim fndA
6 n— oo 6
We have a linear functional
My : %(6, (Cp) —)Cp
f —>/ fdX
&

satisfying [Mx(f)] < [[f]I.
It is clear that if My, = M,,, then A\; = A2. Finally, M, (f) belongs to Q, when
f takes values in @Q,,. Conversely we have the following lemma

Lemma. Every linear functional L on € (®,C,) satisfying |L(f)lp, < ||f|| for
all continuous functions f and L(f) belongs to Q, when f takes values in Q,,
is of the form L = M) for a unique A in A(®).

Proof. The element A can be obtained as follows. For each open subgroup ) of
&, and each coset x of & /9, we put cg(x) = L(xz) where x, is the characteristic
function of z, and then define Ag by the formula Ay =3 ¢ /s ¢5(0)o. These
elements Ay are clearly compatible and so give an element in A(®). O

Observation. If A = g in &, then dg is the Dirac measure given by

/@ fdg = f(9)

Observation. The product in A(®) corresponds to the convolution of measures
which we recall is defined by

/@ F(@)dOn = A2) () = /@ ( / F( + y)dh (@) dra(y)



Observation. If v : & — C, is a continuous group homomorphism, then one sees
easily that we can extend v to a continuous algebra homomorphism,

v:A®) = C,

by the formula v(\) = [, vdA.

Observation. To take account of the fact that the p-adic analogue of the complex
Riemann zeta function also has a pole, we now introduce the notion of a p-adic
pseudo-measure on &. Let Q(®) be the total ring of fractions of A(®), i.e. the
set of all quotients /8 with « and 8 in A(&) and 8 a non-zero divisor. We say
that an element A of Q(®) is a pseudo-measure on & if (g — 1)\ is in A(&) for
all g in &.

Suppose that A is a pseudo-measure on & and let v be a homomorphism from
& to C, which is not identically one. We can then define

ud((g - D))
/ vd\ = EOESEE

where ¢ is any element of & with v(g) # 1. This is independent of the choice of
g because, as remarked earlier v extends to a ring homomorphism from A(®)
to C,.

2 Mahler transform

We now specialize our argument for the Iwasawa algebra of Z,.
Let be R = Z,[T7] the ring of formal power series.

Definition. As usual we define

<1’> )1 n=20
n w otherwise

n:

Theorem. The functions

x x x x
o/ " \1) " \2)  \8) "~
form an orthonormal basis (Mahler basis) of € (Z,,C,).

Theorem (Mahler). Let f : Z, — C, be any continuous function. Then f can
be written uniquely in the form:

where a, € C, tends to 0 as n — oco.

Proof. We take



The idea of the proof is very easy. It is clear that

7 =3 eutn)7)

If we show that lim |ay,(f)|, = 0 then the series
n—oo

gak(f) (i)

converges uniformly and, since f is continous, its sum is f(z) in view of the
relation for f(n) and the fact that non-negative integers are dense in Z,,.

A complete proof can be found in

[A Simple Proof of Mahlers Theorem on Approximation of Continuous
Functions of a p — adic Variable by Polynomials — R. Bojanic] O

Note that the coefficients a,, are given by a,, = (V" f)(0) where
Vi) = flz+1) - f(x)
Lemma. |(7)| <1 for allz € Zy, and n € Z.

Proof. For any x € Z,, we can choose y € Z such that

==Y

n' |P§1

The existence of such a y is given by the density of Z in Z,.

For k=0,1,2,...,n, (nﬁk) is a positive integer. Hence

Yy
<
Further (xgy) =1 and

(x_y> _@-yl-y-1).. . (z-y—k+1) Yy,

k k! n!

where Mg is a p-adic integer. Therefore

r—=y

The identity (Vandermonde Convolution)

G- (07

implies



Since |(¥)|, <1 for all @ in Z,, it follows that || f|| = sup|an|,.
If X is any element of A(Z,), it follows from that

cn()\):/z (i)d)\ (n>0)

D
lies in Z,,. This leads to the following definition.
Definition. We define the Mahler transform M : A(Z,) — R by

M) =D e (NT"
n=0

for A € A(Z,,).
Theorem. The Mahler transform is an isomorphism of Z,-algebras.

Proof. 1t is clear from the previous theorem that M is injective, and is a Z,-
module homomorphism. To see that it is bijective, we construct an inverse
YT : R — A(Zyp) as follows. Let g(T) = > ¢, 7™ be any element of R. We
can then define a linear functional £ on %(Z,, C,) by

‘C(f) = Z anCn
n=0

where f has Mahler expansion f(z) = Y7 an(Z). Of course, the series on the
right converges because a,, tends to zero as n — oo. Since the ¢, lie in Z,, it
is clear that [L£(f)|, < [|f|| for all f. Hence there exists A in A(Z,) such that
L = M), and we define Y(g(T)) = A. It is plain that T is an inverse of M.
In fact, it can also be shown that M preserves products, although we omit the
proof here. [

Lemma. We have M(1z,) = 1+ T, and thus M : A(Z,) — R is the unique
isomorphism of topological Z,-algebras which sends the topological generator 1z,
of Zp to (1 +T).

Proof. Take A = 1z,. By definition,

M) =D en(NT"

n=0

=1, ()9=()

whence the first assertion is clear. For the second assertion, we note that it is
well-known, that for each choice of a topological generator v of Z,, there is a
unique topological isomorphism of Z,-algebras, which maps v to (1 +T). O

where

Lemma. For all g in R, and all integers k > 0, we have the integral

/Z (T ((T))) = (D*¢(T))7—0

P

where D = (1+ 7).

10



Proof. For fixed g(T) = >.,° ¢, T™ in R, consider the linear functional £ on
¢ (Zy,Cp) defined by

c(f) = / £f()dY (g(T))

Clearly, we have [L(f)|, < ||f||, and so £ = M) for some A € A(Z,), whence

we obtain
| wwacm = [ s

We first claim that

M(A) = Dg(T)
To prove this, we note that
Dg(T) =Y (nen + (n+ 1)cng1)T"
n=0

On the other hand, by definition, M(X) = Y7 je,T", where

er=[ (2 )artam)
Z, \I
But we have the identity

x<z>=(n+1)(nil)+n(i> (n > 0)

whence we get e, = nc, + (n + 1)cp4q for all n > 0, thereby proving that
M(X) = Dy(T).
But, for all h(T) € R, we have

/Z 4 (W(T)) = h(0)

P

Indeed, Y(R(T)) = A € A(Z,) such that, if

x) = Z ay, <i) and  h(T) = Z BT
n=0 n=0
then -
[ r@ir=3Y s,
Zyp n=0

Hence, if f =1 then f =377 60, (") and so

/Zld Zamn— = h(0)

P

So the assertion of the lemma is equivalent to

/Z (X (g(T))) = / (DHT)  (k>0)

'3

11



By an induction argument, we have

/ X (D*g(T)) = / P=1d(T(Dg(T)))
7 Z

P P

It is now plain by the fact that M(A) = Dg(T) and pr zf(x)dY(g(T)) =
fzp f(x)d\ that this is equal to

/ T (g(T))
7

P

and the proof of the lemma is complete. O
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