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Group Representations

Definition. A linear representation ρ of a group G on a K-vector space V is a set-theoretic action
on V which preserves the linear structure, that is,

ρ(g)(v1 + v2) = ρ(g)v1 + ρ(g)v2 ∀ v1, v2 ∈ V
ρ(g)(k · v) = k · ρ(g)v ∀ k ∈ K, v ∈ V

up to automorphisms of V . Unless otherwise mentioned, representation will mean finite-dimensional
representation. We will call dimension of ρ (sometimes degree or rank of ρ) the dimension of V as
K-vector space.

Definition. A representation ρ of a group G is a group homomorphism

ρ : G −→ GLn(K)

up to conjugation. We call n the dimension of ρ.

Lemma 1.1. The two definitions above are equivalent.

Proof. Suppose we are given a homomorphism

ρ : G −→ GLn(K)

then define an action of G on Kn as follows:

g ∗ v = ρ(g)v

It is easy to check that this action preserves the linear structure of Kn. It can also be shown that
if ρ and ρ′ are equivalent (i.e., ρ′ = ρ ◦ c with c a conjugation) then ρ and ρ′ give rise to the same
action on Kn up to isomorphisms of Kn.
Viceversa, given an action of G on V = Kn we define a map

ρ : G −→GLn(K)

g −→(g ∗ e1, . . . , g ∗ en)

where {e1, . . . , en} is a basis for V .

Definition. If G is a topological group, a continuous representation ρ of a group G is a continuous
homomorphism

ρ : G −→ GLn(K)

where the topology on GLn(K) is given by the fact that GLn(K) ⊆Mn×n(K) is open.
Equivalently, a continuous representation ρ of a group G is a continuous action of G on a K vector
space, i.e., a continuous map

ρ : G× V −→ V

which preserves the linear structure.
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Galois Representations

We will let Q denote the field of rational numbers and Q denote the field of algebraic numbers,
the algebraic closure of Q. We will also let GQ denote the group of automorphisms of Q, that is
Gal(Q/Q), the absolute Galois group of Q.
An important technical point is that GQ is naturally a topological group, a basis of open neigh-
bourhoods of the identity being given by the subgroups Gal(Q/K) as K runs over subextensions
of Q/Q which are finite over Q. In fact, GQ is a profinite group, being identified with the inverse
limit of discrete groups

Gal(Q/Q) = lim
←
Gal(K/Q)

where K runs over finite normal subextensions of Q/Q.
For each prime number p we may define an absolute value | |p on Q by setting

|α|p = p−r

if α = pra/b with a and b integers coprime to p. If we complete Q with respect to this absolute
value we obtain the field Qp of p-adic numbers, a totally disconnected, locally compact topological
field. We will write GQp for its absolute Galois group Gal(Qp/Qp). The absolute value | |p has a

unique extension to an absolute value on Qp and GQp is identified with the group of automorphisms

of Qp which preserve | |p, or, equivalently, the group of continuous automorphisms of Qp. For each

embedding Q ↪→ Qp we obtain a closed embedding GQp ↪→ GQ.

Qp/Qp is an infinite extension and Qp is not complete. We will denote its completion by Cp. The
Galois group GQp acts on Cp and is in fact the group of continuous automorphisms of Cp.
The elements of Qp (respectively Qp, Cp) with absolute value less than or equal to 1 form a closed
subring Zp (respectively OQp , OCp). These rings are local with maximal ideals pZp (respectively

mQp , mCp) consisting of the elements with absolute value strictly less than 1. The field

Qp
mQp

=
Cp
mCp

is an algebraic closure of the finite field with p elements

Fp =
Z
pZ

and we will denote it by Fp. Thus we obtain a continuous map

GQp −→ GFp

which is surjective. Its kernel is called the inertia subgroup of GQp and is denoted IQp . We want
to focus here on attempts to describe GQ via its representations. Perhaps the most obvious to
consider are those representations

GQ −→ GLn(C)

with open kernel; these are called Artin representations and they are already very interesting.
However one obtains a richer theory considering representations

GQ −→ GLn(Ql)

which are continuous with respect to the l-adic topology on GLn(Ql). We refer to these as l-adic
representations.

2



Examples of Representations

Continuous Character

Suppose we have a group G. A one-dimensional continuous representation of G is given by a
continuous homomorphism

ρ : G −→ GL1(K) = K×

or, equivalently, by a continuous action of G on K which preserve the linear structure.
If K/Q is a finite galois extension and L/Q is a subextension, then the representation of Gal(K/Q)
factors:

Gal(K/Q)
ρ

//

π

��

K×

Gal(L/Q)
Ind
GL/Q
GK/Q

ρ

AA

Cyclotomic Character

Suppose we have a prime p > 0 and consider a compatible family of primitive pn-th roots of unity

(ζp, ζp2 , ζp3 , . . . , ζpn , . . .)

where the compatibility is given by the fact that

(ζpn)
pn

= 1 and (ζpn)
p

= ζpn−1

Consider a group G with an action on the set of primitive pi-th roots of unity such that

g ∗ ζpn = ζanpn where an ∈
(

Z
pnZ

)×
and an ≡ an−1 mod pn−1

then we have a compatible system

(an)n ∈ lim
←−

(
Z
pnZ

)×
= Z×p

and we can define a continuous homomorphism

ρ : G −→Z×p ⊆ Q×p
g −→(an)n

It can be shown that ρ is a continuous representation.

Representations Associated to an Elliptic Curve

Suppose we have an elliptic curve E/Q and consider a prime p > 0. We define E[pn] the pn-torsion

group. We have E[pn] ⊆ Q.

E[pn] = {P ∈ E(Q) [pn] · P = 0}.

We have a compatible system where the maps are given by [p], the multiplication by p.

E[p]
[p]←−−−−− E[p2]

[p]←−−−−− E[p3]
[p]←−−−−− . . .

Suppose we have a point P ≡ (x, y) ∈ E(Q) and a group G = Gal(Q/Q). Then G acts on E(Q) in
the following way:

g ∗ P = (g(x), g(y)) ∈ E(Q)

Furthermore, if P ∈ E[pn] then g ∗ P ∈ E[pn].
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Definition. We define the p-adic Tate module attached to E:

TpE = lim←−
n

(E[pn], [p])

Clearly there is an action of G on this Tate module: G � TpE

Observation. The key point in this construction is that we have a group law over an elliptic curve.

Proposition 3.1. We have a group isomorphism

E[n] '
(

Z
nZ

)2

Then we have the following system

E[p]

∼=

E[p2]

∼=

[p]
oo E[p3]

∼=

[p]
oo . . .oo

(
Z
pZ

)2 (
Z
p2Z

)2

π
oo

(
Z
p3Z

)2

π
oo . . .oo

where the maps π are the canonical projections. Then we conclude that

TpE = lim←−
n

(E[pn], [p]) = lim
←−

(
Z
pnZ

)2

= Z2
p

It might be convenient to work with

VpE = TpE ⊗Zp Qp ' Z2
p ⊗Zp Qp ' Q2

p

and we have an action of G on VpE.

Representations Associated to an Abelian Variety

Example. Consider Gm, the multiplicative group. We have

Gm(Q) = Q×

Then we define
Gm[pn] = {x ∈ Q×p xp

n

= 1}
and we follow the construction we have already done for the p-torsion group of an elliptic curve.
What we obtain is that TpGm(Q) is a free Zp- module of rank one: this is a general construction
for the cyclotomic character.

References. See “Theory of p-adic Galois Representations” by J.M. Fontaine and Yi Ouyang.
See “The Arithmetic of Elliptic Curves” by J.H. Silverman, Section III.7.3.

In general, given an abelian variety A of dimension g ≥ 1 we can use the same argument and
construct the p-adic Tate module attached to A. It can be proved that

A[pn] '
(

Z
pnZ

)2g

A[p]

∼=

A[p2]

∼=

[p]
oo A[p3]

∼=

[p]
oo . . .oo

(
Z
pZ

)2g (
Z
p2Z

)2g

π
oo

(
Z
p3Z

)2g

π
oo . . .oo

from which we conclude:

TpA = lim←−
n

(A[pn], [p]) = lim
←−

(
Z
pnZ

)2g

= Z2g
p
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Galois Representations Associated to a Modular Form

Consider a modular curve X. We have a Riemann surface X|C and we associate to it a complex
abelian variety.
X|C is a smooth curve of genus g. We have H1(X,Z), the abelianization of the fundamental group,
which is a free abelian group of rank 2g, i.e., H1(X,Z) ' Z2g. Furthermore we consider H0(X,Ω1

X),
the group of holomorphic 1-forms over X, which is a C-vector space of dimension g.
We construct the Abel-Jacobi map

H1(X,Z)
ϕ−−−−−−−→ H0(X,Ω1

X)V

[γ] −−−−−−−→ ϕ([γ]) where ϕ([γ])(ω) =

∫
γ

ω

If γ is a path on X (γ : [0, 1] −→ X) and ω is a differential on X then∫
γ

ω =

∫ 1

0

γ∗(ω)

It turns out that ϕ is injective and it is a group homomorphism.

H1(X,Z) ↪→ H0(X,Ω1
X)V

and the image is a lattice of dimension 2g:

Z2g ⊆ Cg

Definition. We can construct an abelian variety

A =
H0(X,Ω1

X)V

H1(X,Z)

of dimension g. Observe that A ' Cg/Λ where Λ is the lattice Z2g.

Theorem 4.1 (Abel - Jacobi). We have an isomorphism of algebraic varieties:

A/Q '
{D ∈ Div(X) degD = 0}
{D ∈ Div(X) D is principal}

=
Div0(X)

P (X)
= Pic0(X)

Furthermore, whether a point O ∈ X is fixed, we have the following map

uO : X −→ Pic0(X) =
Div0(X)

P (X)

Q −→ [(Q)− (O)]

When g = 1 this map is an isomorphism. In general it is still true that:

Proposition 4.2. If the genus g ≥ 1, the map uO is an embedding

Definition. We indicate A as the Jacobian of X:

A = Jac(X)/Q

References. See “Abel-Jacobi theorem” by Seddik Gmira.
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Hecke Algebra and Shimura Construction

Definition. Suppose Γ = Γ1(N) and consider d ∈ (Z/NZ)
×

(N is the level of Γ). We define the
Diamond operator 〈d〉 to be the map such that

〈d〉f(E, ξ, ω) = f(E, dξ, ω)

Definition. If p is a prime not dividing N , the level of Γ, then define the Hecke operator Tp acting
on the space S2(Γ) by the formula

Tp(f) =
1

p

p−1∑
i=0

f(
τ + i

p
) + p〈p〉f(pτ)

Definition. If p is a prime dividing N , the level of Γ, then define the Hecke operator Up acting
on the space S2(Γ) by the formula

Up(f) =
1

p

p−1∑
i=0

f(
τ + i

p
) =

∑
p|n

anq
n
p

Consider T the Hecke Algebra, i.e., the subring of EndC(S2(Γ)) generated over C by all the
Hecke operators Tp for p - N , Uq for q | N , and 〈d〉 acting on S2(Γ).

T ⊆ S2(Γ)V = H0(X,Ω′X)

We have an action of T on Jac(X)/Q via duality that fixes Λ = H1(X,Z); for T ∈ T we call this
action

ϕT : Jac(X) −→ Jac(X)

Suppose we have f ∈ S2(Γ) an eigenform for T. Then T (f) = aT f where aT ∈ Q. We call Kf

the field generated over Q by all the eigenvalues associated to f : Kf = Q({aT }T ) It is possible to
prove that Kf/Q is a finite extension.
We have a ring morphism

Ψf : T −→ Kf

T −→ aT

We have T � Jac(X). Define
If = ker Ψf

and set

Af =
Jac(X)

If · Jac(X)

It turns out that Af is an abelian variety and we call it the variety associated to f . It is easy to
observe that If annihilates Af and therefore T/If ⊆ End(Af ).

Lemma 4.3.
dimAf = [Kf : Q]

In particular, if Kf = Q, then Af is an elliptic curve.

Suppose now we have a prime l. To the abelian variety Af we can associate the l-adic Tate
module TlAf .
TlAf is a Zl free module of rank 2[Kf : Q] and we can construct

VlAf = TlAf ⊗Zl Ql
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VlAf is a free module over Kf ⊗Ql Ql of rank 2 with a linear action of GQ (Galois Representation).
Consider the splitting beahviour of l in OKf :

lOKf = Pe1
1 · . . . ·P

et
t

then

Kf ⊗Ql Ql =

t∏
i=1

(Kf )Pi

where (Kf )P is the completion of Kf with respect to P. Then we can write

VlAf =

t⊕
i=1

Vl,i

where Vl,i is a (Kf )Pi-vector space of dimension 2. For each i we have

ρi : GQ −→ GL2(KfPi
)

a representation of dimension 2.

References. See “A First Course in Modular Forms” - F. Diamond and J. Shurman

From Modular Forms to Galois Representations

Notation. We define TZ to be the ring generated over Z by the Hecke operators Tn and < d >
acting on the space S2(Γ,Z).
More generally, if A is any ring, we define TA to be the A-algebra TZ ⊗ A. This Hecke ring acts
on the space S2(Γ, A) in a natural way.
Finally, we will write JΓ for the jacobian variety of XΓ.

In this section we suppose that f =
∑
n an(f)qn is a newform of weight 2 and level Nf .

Definition. We define the old subspace of S2(Γ) to be the space spanned by those functions which
are of the form g(az), where g is in S2(Γ1(M)) for some M < Nf and aM dividing Nf . We define
the new subspace of S2(Γ) to be the orthogonal complement of the old subspace with respect to
the Petersson scalar product. A normalized eigenform in the new subspace is called a newform of
level Nf .

Recall. The spaces S2(Γ) are equipped with a natural Hermitian inner product given by the Pe-
tersson scalar product:

< f, g >=
i

8π

∫
XΓ

ωf ∧ ωg =

∫
H/Γ

f(τ)g(τ)dxdy

Let Kf denote the number field in C generated by the Fourier coefficients an(f). Let ψf
denote the character of f , i.e., the homomorphism (Z/NfZ)

× −→ K×f defined by mapping d to
the eigenvalue of < d > on f .

Recall. The construction of Shimura that we have seen before associates to f (or rather, to the
orbit [f ] of f under GQ) an abelian variety Af of dimension [Kf : Q].
Let f =

∑
n anq

n be an eigenform on Γ with (not necessarily rational) Fourier coefficients, cor-
responding to a surjective algebra homomorphism λf : TQ −→ Kf . Let If ⊆ TZ be the ideal
ker(λf )∩TZ. The image If (JΓ) is a (connected) subabelian variety of JΓ which is stable under TZ
and is defined over Q.

Definition. The abelian variety Af associated to f is the quotient

Af = JΓ/If (JΓ)

Af is defined over Q and depends only on [f ], and its endomorphism ring contains TZ/If which is
isomorphic to an order in Kf .
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This abelian variety is a certain quotient of J1(Nf ), and the action of the Hecke algebra on
J1(Nf ) provides an embedding

Kf ↪→ EndQ(Af )⊗Q.
We saw also that for each prime l the Tate module Tl(Af ) ⊗Zl Ql becomes a free module of rank
two over Kf ⊗Ql. The action of the Galois group GQ on the Tate module commutes with that of
Kf , so that a choice of basis for the Tate module provides a representation

GQ −→ GL2(Kf ⊗Ql)

As Kf ⊗ Ql can be identified with the product of the completions of Kf at its primes over l, we
obtain from f certain 2-dimensional l-adic representations of GQ.

l-adic Representations

In this discussion, we fix a prime l and a finite extension K of Ql. We let O denote the ring of
integers of K, λ the maximal ideal and k the residue field. We shall consider l-adic representations
with coefficients in finite extensions of our fixed field K. We regard K as a subfield of Ql and fix
embeddings Q −→ Ql and Q −→ C. If K ′ is a finite extension of K with ring of integers O′, then
we say that an l-adic representation Gl −→ GL2(K ′) is good (respectively, ordinary, semistable) if
it is conjugate over K ′ to a representation Gl −→ GL2(O′) which is good (respectively, ordinary,
semistable).

Definition. Let G be any topological group; by a finite O[G]-module we shall mean a discrete
O-module of finite cardinality with a continuous action of G. By a profinite O[G]-module we shall
mean an inverse limit of finite O[G]-modules.
If M is a profinite O[Gl]-module then we will call M

• good, if for every discrete quotient M ′ of M there is a finite flat group scheme F/Zl such
that M ′ ' F(Ql) as Zl[Gl]-modules;

• ordinary, if there is an exact sequence

(0) −→M (−1) −→M −→M (0) −→ (0)

of profinite O[Gl]-modules such that Il acts trivially on M (0) and by ε on M (−1) (equivalently,
if and only if for all σ, τ ∈ Il we have (σ − ε(σ))(τ1) = 0 on M);

• semistable, if M is either good or ordinary.

Suppose that R is a complete Nöetherian local O-algebra with residue field k. We will call a
continuous representation ρ : Gl → GL2(R) good, ordinary or semistable, if

det ρ|Il = ε (cyclotomic character)

and if the underlying profinite O[Gl]-module, Mρ is good, ordinary or semistable.

Definition. A representation ρ of GQ is said to be unramified at p if ρ is trivial on the inertia
group Ip.

Observation. If ρ is unramified at p then ρ(Frobp) is well defined.

Let K ′f denote the K-algebra in Ql generated by the Fourier coefficients of f . Thus K ′f is a
finite extension of K, and it contains the completion of Kf at the prime over l determined by our
choice of embeddings. We let O′f denote the ring of integers of K ′f and write k′f for its residue
field. We define

ρf : GQ −→ GL2(K ′f )

as the pushforward of GQ −→ GL2(Kf ⊗Ql) by the natural map Kf ⊗Ql −→ K ′f . We assume the
basis is chosen so that ρf factors through GL2(O′f ). We also let ψ′f denote the finite order l-adic
character

GQ � Gal(Q(ζNf )/Q) −→ (K ′f )×

obtained from ψf .
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The following theorem lists several fundamental properties of the l-adic representations ρf
obtained from Shimura’s construction. In the statement we fix f as above and write simply N , an,
ρ, ψ, ψ′ and K ′ for Nf , an(f), ρf , ψf , ψ′f and K ′f respectively.

Theorem 5.1. The l-adic representation

ρ : GQ −→ GL2(K ′)

has the following properties.

(a) If p - Nf then ρ is unramified at p and ρ(Frobp) has characteristic polynomial

X2 − apX + pψ(p)

(b) det(ρ) is the product of ψ′ with the l-adic cyclotomic character ε, and ρ(c) is conjugate to(
1 0
0 −1

)
(c) ρ is absolutely irreducible.

(d) The conductor N(ρ) is the prime-to-l-part of N .

(e) Suppose that p 6= l and p || N . Let χ denote the unramified character Gp −→ (K ′)× satisfying
χ(Frobp) = ap. If p does not divide the conductor of ψ, then ρ |Gp is of the form(

χε ∗
0 χ

)
If p divides the conductor of ψ, then ρ |Gp is of the form

χ−1εψ′ |Gp ⊕χ

(f) If l - 2N , then ρ |Gl is good. Moreover, ρ |Gl is ordinary if and only if al is a unit in the ring of
integers of K ′, in which case ρIl(Frobl) is the unit root of the polynomial X2 − alX + lψ(l).

(g) If l is odd and l || N , but the conductor of ψ is not divisible by l, then ρ |Gl is ordinary and
ρIl(Frobl) = al.

Proof. Recall that J1(N) has good reduction at those prime p that do not divide N . Then the
action of Gp on VlAf is unramified.

(a) The key ingredient is the Eichler-Shimura congruence relation (Theorem 1.29 on the notes):

Theorem 5.2. If p - N then the endomorphism Tp of JΓ/Fp satisfies

Tp = F + 〈p〉F ′

where F is the Frobenius endomorphism and F ′ is the dual endomorphism (Verschiebung)
on JΓ/Fp .

Recall that J1(N) has good reduction at those prime p not dividing N ; so the action of Gp
on TlAf ⊗Zl Ql is unramified and it is in fact described by the action of Frobp ∈ GFp on the
Tate module of its reduction. But this is given by the Frobenius endomorphism F whose
characteristic polynomial has been already computed (Corollary 1.41 on the notes):

Lemma 5.3. For p not dividing Nl, the characteristic polynomial of F on the TQl-module
ν is

X2 − TpX + 〈p〉p = 0

(The proof of the Lemma consists in multiplying the Shimura congruence relation by F and
observing that FF ′ = p).

References. See “Introduction to the Arithmetic of Automorphic Functions” and “On the
Factors of the Jacobian Variety of a Modular Function Field” by Goro Shimura.
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(b) The first statement follows from (a) applying the Chebotarev density Theorem. The second
assertion is a consequence of the fact that ψ(−1) = 1.

(c) It was proved by Ribet by contraddiction to the following theorem assuming the reducibility
of the representation (Theorem 1.24 on the notes):

Theorem 5.4. Let f ∈ S2(Γ1(N)). The coefficients an ∈ C satisfy the inequality

|an| ≤ c(f)σ0(n)
√
n

where c(f) is a constant depending only on f , and σ0(n) denotes the number of positive
divisors on n.

In “On l-adic Representation Attached to Modular Forms II”, Ribet showed that, assuming
the reducibility of the representation, we can conclude that Theorem 5.4 is false for infinitely
many primes p; indeed, we get an equality ap = 1 + pk−1 for k = 2 (weight of f).

(d)-(e) They follow from a deep result of Carayol based on the work of Langlands, Deligne and
others characterizing ρ|Gp in terms of ψ|Gp .

(f) The first assertion follows from the fact that Af has good reduction at l if l - N . The second
statement follows from the Eichler-Shimura congruence relation (Theorem 5.2).

(g) It follows from the work of Deligne - Rapoport.

mod l Representations

Let K be an extension of Ql and let OK denotes its ring of integers. Suppose m the maximal ideal
of OK and call k the residue field.
If ρ : GQ → GLd(K) is an l-adic representation (i.e., a continuous representation GQ → GLd(K)
where K is a finite extension of Ql and ρ is unramified at all but finitely many primes) then
the image of ρ is compact, and hence ρ can be conjugated to a homomorphism GQ → GLd(OK).
Reducing modulo the maximal ideal m gives a residual representation

ρ : GQ −→ GLd(k)

This representation may depend on the particular GLd(K)-conjugate of ρ chosen, but its semisim-
plification

ρss

(i.e., the unique semi-simple representation with the same Jordan-Hölder factors) is uniquely de-
termined by ρ.
In our situation we have Kf which is a finite extension of Ql and an l-adic representation ρf :
GQ −→ GL2(Kf ). Now define

ρf : GQ −→ GL2(kf )

the semi-simplification of the reduction of ρf . Assertions analogous to those in Theorem 5.1 hold
for ρ = ρf , except that

• The representation need not be absolutely irreducible (as in (c)). However if l is odd, one
checks using (b) that ρ is irreducible if and only if it is absolutely irreducible.

• In (d), one only has divisibility of the prime-to-l part of Nf by N(ρ).

Proposition 5.5. Suppose that p is a prime such that p | Nf , p 6≡ 1 mod l and ρf is unramified
at p. Then tr(ρf (Frobp))

2 = (p+ 1)2 in kf .
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Artin Representations

The theory of Hecke operators and newforms extends to modular forms on Γ1(N) of arbitrary
weight. The construction of l-adic representations associated to newforms was generalized to
weight greater than 1 by Deligne using etale cohomology. There are also Galois representations
associated to newforms of weight 1 by Deligne and Serre, but an essential difference is that these
are Artin representations.

Theorem 5.6 (Deligne - Serre). Let N ∈ N and consider χ an odd Dirichlet character. Let
0 6= g =

∑
n an(g)qn ∈ M1(N,χ) be a normalised eigenform for the Hecke operators. Then there

exists a 2-dimensional complex Galois representation

ρ : GQ −→ GL2(C)

that is unramified at all primes p that do not divide N and such that

Tr(Frobp) = ap and det(Frobp) = χ(p)

for all primes p - N . Such a representation is irreducible if and only if g is a cusp form.

Sketch of proof. If f is as in the hypothesis, then f is uniquely associated to two Dirichlet characters
φ, ψ that (raised to modulo N) have product χ. Hence the map ρ : GQ −→ GL2(C) defined by

σ −→
(
φ(σ) 0

0 ψ(σ)

)
is a reducible representation with the desired properties.
If g =

∑+∞
n=1 anq

n is a cusp form, then the Theorem follows considering L ⊆ C, the algebraic
number field containing ap and χ(p) for all p, and the reduction modulo some place λl of L (where
l is a prime that splits completely).

Theorem 5.7. If g =
∑
n an(g)qn is a newform of weight one, level Ng and character ψg, then

there is an irreducible Artin representation

ρg : GQ −→ GL2(C)

of conductor Ng with the following property: if p - Ng, then the characteristic polynomial of
ρg(Frobp) is

X2 − ap(g)X + ψg(p)

Sketch of proof. We can observe the following things:

• det(ρg) is the character of GQ corresponding to ψ and ρg(c) is conjugated to the matrix(
1 0
0 −1

)
• A basis can be chosen so that the representation ρg takes values in GL2(Kg) (where Kg is

the number field generated by the an(g)). Moreover suppose that K is a finite extension of
Ql in Ql and we have fixed embeddings of Q in C and Ql). If Kg is contained in K, then
we can view ρg as giving rise to an l-adic representation GQ → GL2(K) and hence a mod l
representation GQ → GL2(k).

• A key idea in the construction of ρg is to first construct the mod l representations using those
already associated to newforms of higher weight. More precisely, suppose that Kg −→ K
as in the previous point. One can show that for some newform f of weight 2 and level Nf
dividing Nl we have

ap(g) ≡ ap(f) ψg(p) ≡ pψf (p)

for all p - Nl, the congruence being modulo the maximal ideal of the ring of integers of K ′f .
Thus ρf is the semi-simplification of the desired mod l representation (with scalars extended
to kf ).
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From Galois Representations to Modular Forms

In the previous sections we have seen how to constuct a Galois representation starting from a
modular form.We now want to understand if it is possible to do the inverse road.
It is conjectured that certain types of two-dimensional representations of GQ always arise from the
constructions described in the previous section. We now state some of the conjectures and the
results known prior to Wiles’s work.

Artin Representations

Conjecture 6.1 (Artin’s Conjecture). Let ρ : GQ −→ GL2(C) be a continuous irreducible repre-
sentation with det(ρ(c)) = −1. Then ρ is equivalent to ρg for some newform g of weight one.

Observation. Conjecture 6.1 is equivalent to the statement that the Artin L-functions attached to
ρ and to all its twists by one-dimensional characters are entire. (The Artin conjecture predicts that
the Artin L-function L(s, ρ) is entire, for an arbitrary irreducible, non-trivial Artin representation
ρ : GQ −→ GLd(C)).

A large part of conjecture 6.1 was proved by Langlands.

Theorem 6.2 (Weil-Langlands). Given ρ : GQ → GL2(C) satisfying

(a) ρ is irreducible;

(b) det ρ is odd;

(c) for all continuous characters χ : GQ → C×, the L-function L(ρ⊗χ, s) =
∑+∞
n=1 χ(n)ann

−s has
an analytic continuation to the entire complex plane

with Artin conductor N , let

L(ρ, s) =

+∞∑
n=1

ann
−s

be its Artin L-function. Then f =
∑+∞
n=1 anq

n is a normalized newform lying in S1(N,χ).

Sketch of proof. The proof consists in realizing a bijection between the set of (isomorphism classes
of) complex Galois representations of conductor N satisfying (a),(b) and (c) above and the set of
normalized newforms on S1(N,χ).

The results were extended by Tunnell.

Theorem 6.3. Let ρ : GQ −→ GL2(C) be a continuous irreducible representation such that ρ(GQ)
is solvable and det(ρ(c)) = −1. Then ρ is equivalent to ρg for some newform g of weight one.

Remark. The solvability hypothesis excludes only the case where the projective image of ρ is
isomorphic to A5 the alternating group of order 5.

Remark. If the projective image of ρ is dihedral, then ρ is induced from a character of a quadratic
extension of Q. In this case the result can already be deduced from the work of Hecke.

Remark. A recent work of Khare and Wintenberger on Serre’s modularity conjecture has shown
that the Artin conjecture about L-functions for odd, 2-dimensional representations is true. The
case of n dimensional representations

ρ : GQ → GLn(C)

with n even is still open.
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mod l Representations

Definition. We say that a representation ρ : GQ −→ GL2(k) is modular (of level N) if, for some
newform f of weight 2 (and level N), ρ is equivalent over kf to ρf .

Proposition 6.4. If f ∈ S2(M,χ) is a newform of some level M dividing N , then its Fourier
coefficients lie in a finite extension K of Q. Moreover, if σ ∈ Gal(Q/Q) is any Galois automor-
phism, then the Fourier series fσ obtained by applying σ to the Fourier coefficients is a newform
in S2(M,χσ).

By Proposition 6.4 the notion is independent of the choices of embeddings K ↪→ Ql, Q ↪→ Ql
and Q ↪→ C. Moreover, if K ′ is a finite extension of K with residue field k′, then ρ is modular if
and only if ρ⊗k k′ is modular.

Theorem 6.5. Let ρ : GQ → GL2(k) be a continuous absolutely irreducible representation with
det(ρ(c)) = −1. Suppose that one of the following holds:

(a) k = F3;

(b) the projective image of ρ is dihedral.

Then ρ is modular.

Sketch of proof. We will study the two cases separately.

(a) Let’s consider the surjection
GL2(Z[

√
−2]) −→ GL2(F3)

defined by reduction mod (1 +
√
−2). One checks that there is a section

s : GL2(F3) −→ GL2(Z[
√
−2])

and applies theorem 6.3 to s ◦ ρ. The resulting representation arises from a weight one
newform, and hence its reduction ρ is equivalent to ρf for some f .

(b) ρ is equivalent to a representation of the form Ind
GQ
GF ξ where F is a quadratic extension of Q

and ξ is a character GF −→ k×. (We have here enlarged K if necessary.) Let n be the order
of ξ; choose an embedding

Q(e
2πi
n ) ↪→ K

and lift ξ to a character ξ : GF −→ Z[e2πi/n]×. We may always choose ξ so that the Artin

representation ρ = Ind
GQ
GF ξ is odd, i.e., det(ρ(c)) = −1. (In the case l = 2 and F real

quadratic, we may have to multiply ξ by a suitable quadratic character of GF ). We then
apply 6.3 to ρ and deduce as in case (a) that ρ is modular.

In general we have the following

Conjecture 6.6 (Serre’s Conjecture). Let ρ : GQ → GL2(k) be a continuous absolutely irreducible
representation with det(ρ(c)) = −1. Then ρ is modular.

Serre also proposed a refinement of the conjecture which predicts that ρ is associated to a
newform of specified weight, level and character. This refinement, known as “Serres refined conjec-
ture”, excludes weight 1 modular forms although a further reformulation was made by Edixhoven
to include them. Through work of Mazur, Ribet, Carayol, Gross and others, this refinement is now
known to be equivalent to Conjecture 6.6 if l is odd, and also when l = 2 in many cases. (One also
needs to impose a mild restriction in the case l = 3).
Today this conjecture is known to be true thanks to a work of Chandrashekhar Khare (that already
in 2005 proved some cases of it) and Jean-Pierre Wintenberger.
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Here we give a variant which applies to newforms of weight two. Before doing so, we assume l
is odd and define an integer δ(ρ) as follows:

• δ(ρ) = 0 if ρ|Gl is good;

• δ(ρ) = 1 if ρ|Gl is not good and ρ|Il ⊗k k is of the form(
εa ∗
0 1

)
,

(
ε ∗
0 εa

)
or

(
ψa 0
0 ψa

)
for some positive integer a < l. (Recall that ε is the cyclotomic character and ψ is the
character of Il).

• δ(ρ) = 2 otherwise.

Theorem 6.7. Suppose that l is odd and ρ is absolutely irreducible and modular. If l = 3, then
suppose also that ρ|GQ(

√
−3)

is absolutely irreducible. Then there exists a newform f of weight two

such that

• ρ is equivalent over kf to ρf ;

• Nf = N(ρ)lδ(ρ);

• the order of ψf is not divisible by l.

Proof. The existence of such an f follows from the work of Diamond “The refined Conjecture
of Serre”, but with Nf dividing N(ρ)lδ(ρ). It can be shown that Nf is divisible by N(ρ). The
divisibility of Nf by δ(ρ) follows from some results in the works of Gross and Edixhoven.

l-adic Representations

Let ρ : GQ → GL2(K) be an l-adic representation.

Definition. We say that ρ is modular if, for some weight 2 newform f , ρ is equivalent over K ′f to
ρf .

The notion is independent of the choices of embeddings and well-behaved under extension of
scalars. The following is a special case of a conjecture of Fontaine and Mazur.

Conjecture 6.8 (Fontaine-Mazur). If ρ : GQ → GL2(K) is an absolutely irreducible l-adic repre-
sentation and ρ|GQl is semistable, then ρ is modular.

(Recall that for us l-adic representations are defined to be unramified at all but finitely many
primes. Recall also that if ρ|Gl is semistable, then by definition det ρ|Il is the cyclotomic character
ε).

Remark. Relatively little was known about this conjecture before Wiles’ work. Wiles proves that
under suitable hypotheses, the modularity of ρ implies that of ρ.

Remark. In the work of Fontaine and Mazur there is a stroger conjecture than the one here;
in particular, the semistability hypothesis could be replaced with a suitable notion of potential
semistability. On the other hand, one expects that if ρ|Gl is semistable, then it is equivalent to ρf
(over K ′f ) for some f on Γ1(N(ρ)) ∩ Γ0(l) (and on Γ1(N(ρ)) if ρ|Gl is good).

Conjecture 6.9 (Shimura-Taniyama). All elliptic curves defined over Q are modular.

The Shimura-Taniyama conjecture can be viewed in the framework of the problem of associating
modular forms to Galois representations. Let E be an elliptic curve defined over Q. For each prime
l, we let ρE,l denote the l-adic representation GQ → GL2(Ql) defined by the action of GQ on the
Tate module of E.
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Proposition 6.10. The following are equivalent:

(a) E is modular.

(b) ρE,l is modular for all primes l.

(c) ρE,l is modular for some prime l.

Proof. We have already seen that if E is modular, then E is isogenous to Af for some weight
two newform f with Kf = Q. It follows that for each prime l, ρE,l is equivalent to the l-adic
representation ρf . Hence (a)=⇒(b)=⇒(c).
To show (c)=⇒(b), suppose that for some l and some f , the representations ρE,l and ρf are
equivalent. First observe that for all but finitely primes p, we have

tr(ρf (Frobp)) = tr(ρE,l(Frobp))

We deduce that for all but finitely many primes p

ap(f) = p+ 1−#Ep(Fp) ∈ Z

We find that for each prime l, ρE,l is equivalent to ρf and is therefore modular.
We finally show that (b)=⇒(a). The equality above holds for all primes p not dividing Nf , which
by theorem 5.1, part (d), is the conductor of E. Since det(ρf ) = det(ρE,l) = ε, we see by Theorem
5.1 Part (b) that ψf is trivial. We conclude that ap is in {0,±1} for primes p dividing Nf .
Thus Kf = Q and Af is an elliptic curve. Faltings’ isogeny Theorem now tells us that E and Af
are isogenous and we conclude that E is modular.

Remark. Note that the equivalence (b)⇐⇒(c) does not require Faltings’ isogeny Theorem.

Remark. Tate conjectured that the L-function determined the elliptic curve E up to isogeny over
k. More precisely, that the map of Zl-modules:

Homk(E,E′)⊗ Zl → HomGk(TlE, TlE
′)

is an isomorphism, for any two elliptic curves E and E′ over k. This was proved (for abelian
varieties) by Faltings and it is know known as Falting’s Isogeny Theorem.

Remark. In the paper “On the Modularity of Elliptic Curves over Q” we can find the following
chain of equivalences:

(1) The L-function L(E, s) of E equals the L-function L(f, s) for some eigenform f .

(2) The L-function L(E, s) of E equals the L-function L(f, s) for some eigenform f of weight 2
and level N(E).

(3) ρE,l is modular for some prime l.

(4) ρE,l is modular for all primes l.

(5) There is a non-constant holomorphic map X1(N)(C)→ E(C) for some positive integer N .

(6) There is a non-constant morphism X1(N(E))→ E which is defined over Q.

(7) E is modular.

The implications (2)=⇒(1), (4)=⇒(3), and (6)=⇒(5) are tautological. The implication (1)=⇒(4)
follows from the characterisation of L(E, s) in terms of ρE,l. The implication (3)=⇒(2) follows
from a Theorem of Carayol and a Theorem of Faltings. The implication (2)=⇒(6) follows from
a construction of Shimura and a Theorem of Faltings. The implication (5)=⇒(3) seems to have
been first noticed by Mazur.
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Proposition 6.11. If the Fontaine-Mazur conjecture (Conjecture 6.8) holds for some prime l, then
the Shimura-Taniyama conjecture holds. If Serre’s conjecture (Conjecture 6.6) holds for infinitely
many l, then the Shimura-Taniyama conjecture (Conjecture 6.9) holds.

Proof. The first assertion is immediate from Proposition 6.10 and the irreducibility of ρE,l. The
second follows from the work of Serre. (We have implicitly chosen the field K to be Ql in the
statements of Conjectures 6.8 and 6.6, but it may be replaced by a finite extension).

Remark. Note that to prove a given elliptic curve E is modular, it suffices to prove that Conjecture
6.8 holds for a single l at which E has semistable reduction. Wiles’ approach is to show that certain
cases of Conjecture 6.6 imply cases of Conjecture 6.8 and hence cases of the Shimura-Taniyama
conjecture.

Now the Shimura-Taniyama conjecture is known to be true with the name of “Modularity
Theorem”.
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